當前位置:首頁 » 石油礦藏 » 石油分子結構有什麼特點
擴展閱讀

石油分子結構有什麼特點

發布時間: 2023-09-15 12:59:02

Ⅰ 汞、氧氣、石油分別都是以什麼形態存在的呢

汞、氧氣、石油分別都是以什麼形態存在的呢?
石油是十分復雜的烴類及非烴類化合物的混合物,主要的組成元素是碳和氫,還有少量的硫、氧等雜原子,以及五十種微量元素如鎳、釩、鐵、鈉等。組成石油的化合物的相對分子質量從幾十到幾千,其分子結構也是多種多樣。合理、完整地描述石油混合物中各分子結構與含量,對於煉廠在分子層次管理石油加工過程,有著重大的意義。



01.石油分子模型構建背景

要想在數萬種分子的混合物中定量各分子組成,仍是一個極大的挑戰。目前,對於沸點高於汽油的組分,主流的分析方法無法給出所有分子細節上的定性與定量信息。為了在缺乏完整實驗數據的情況下,仍能得到油品的分子組成信息,對石油混合物進行相平衡和物性計算,學術界先是發展了不同的石油組分特徵化方法,後又逐漸摸索出了一條石油分子組成模型的技術路線,即基於模型化合物的虛擬分子集的方法。

本文先對石油組分特徵化方法進行介紹,隨後對虛擬分子集法作闡述。

02.石油組分特徵化方法

為了對復雜的石油體系進行表徵,揭示其結構特性,研究者提出了多種簡化的表徵方法,這些簡化方法可以看作早期的石油分子特徵化工作內容,有些至今仍被廣泛使用。

2.1 虛擬組分法

虛擬組分法是把石油或石油餾分按沸程分為一系列窄餾分,每個窄餾分都被看作一個組分,稱為虛擬組分,同時以窄餾分的平均沸點、密度、平均相對分子量等表徵各虛擬組分的性質。

如此,石油餾分這一復雜混合物就可以看成是由一定數量虛擬組分構成的混合物,然後按多元氣液平衡的處理方法進行計算。可以說,傳統石油加工的流程模擬方法學基本上是建立在已超過80年歷史的虛擬組分理論之上。



圖1:虛擬組分示例

虛擬組分方法是現在的流程模擬軟體廣泛採用的方法,該方法處理石油混合物的優點在於虛擬組分數目可以根據需要進行任意劃分,臨界性質關聯式的選擇可根據體系不同而進行選擇。可以說,傳統石油加工的流程模擬方法學基本上是建立在已超過80年歷史的「虛擬組分」理論之上。

2.2 真分子法

真分子法使用某個真實分子來代表一個石油餾分。該方法使用真實分子代表餾分組成,計算結果的精度較高,但是對於復雜餾分則需要選擇數量龐大的真實分子,且代表重質餾分的真實分子性質仍需要估算,增加了模型運算量和復雜程度。

2.3 連續熱力學法

連續熱力學法是將石油當作含有無限多組分的混合物,通過適當的分布函數來描述其分子組成。

連續熱力學法計算過程嚴格,理論基礎較為完善,不需要臨界性質關聯式進行估算,可在一定程度上提高相平衡計算過程的效率。但是該方法不足之處是簡化了進料分布函數,認為該函數與氣、液相分布函數同類型,因此只能近似計算,精度並沒有十分明顯的提升。

03.基於模型化合物的虛擬分子集

傳統的石油組分特徵化方法對於不同餾分的適應性較差,且劃分方法過於粗糙,導致包含的分子組成細節信息過少。隨著石油分子檢測分析方法的發展,全二維氣相色譜(GC×GC)、高效液相色譜(HPLC)、核磁共振譜(NMR)以及傅立葉變換離子迴旋共振質譜(FT-ICR-MS)等測量方法也用來描述油品性質及雜原子分布情況,人們對石油分子的理解變的更為深刻。雖然目前並沒有單一的儀器分析手段能夠實現對所有分子的定性和定量表徵,但已在石油中鑒定出數種分子芳香環系核心,顯示出石油分子核心具有較明顯的連續性,根據這些性質,研究者開發了多種基於計算機輔助表示分子的方法。



圖2:125種常見於石油餾分中的多環核心,圖片來自文獻①

3.1 結構導向集總法

1992年,Mobil公司的Quann和Jaffe提出了結構導向集總法(Structure-Oriented Lumping, SOL),使用22個結構向量來清晰地描述石油分子的結構。結構導向集總的核心概念是結構向量,即認為石油中的分子都可以用向量表示。下表展示了各個結構向量及其對不同元素的貢獻值。

Ⅱ 石油是由什麼組成的

經過分析,石油主要是由碳和氫構成。其中碳佔84%~87%左右,氫佔12%~14%左右。餘下的百分之一是極微量的硫、氧、氮等元素。碳和氫可以形成多種化合物,按它們的原子數從少到多排列,有甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷等等。石油就是由這些化合物組成的。

組成石油的化合物復雜,它們含有相對分子質量從幾十到幾千的各種烷烴、環烷烴和芳香烴。除烴類之外,石油中還含有數量不等的非烴類化合物,主要是含硫、含氮、含氧的化合物以及一些膠狀瀝青質。石油的大部分是液態烴,同時在液態烴里溶有氣態烴和固態烴。

石油的成油機理有生物沉積變油和石化油兩種學說。

前者較廣為接受,認為石油是古代海洋或湖泊中的生物經過漫長的演化形成,屬於生物沉積變油,不可再生。

後者認為石油是由地殼內本身的碳生成,與生物無關,可再生。石油主要被用來作為燃油和汽油,也是許多化學工業產品,如溶液、化肥、殺蟲劑和塑料等的原料。

石油的性質因產地而異,密度為0.8-1.0g/cm3,粘度范圍很寬,凝固點差別很大(30℃~-60℃),沸點范圍為常溫到500攝氏度以上,可溶於多種有機溶劑,不溶於水,但可與水形成乳狀液。不過不同油田的石油成分和外貌可以區分很大。石油主要被用作燃油和汽油,燃料油和汽油在2012年組成世界上最重要的二次能源之一。

Ⅲ 石油和天然氣的化學組成

(一)石油的化學組成和類型

石油是指以液態形式存在於地下的碳氫化合物的混合物。石油的組成和性質受到原始母質、形成條件和後期變化等因素的共同影響。因此,石油的成分變化較大。

組成石油的主要元素為碳、氫,主要以碳氫化合物的形式存在;其次為氧、氮、硫,主要形成非烴類化合物。其中,碳佔82%~87%(Hunt,1961),氫佔12%~15%,氧、氮、硫的含量僅為0.5%~5%。此外,石油中還含有40餘種微量元素,其中V、Ni含量較高。石油與有機質的微量元素含量分布極為相似,但與泥岩中微量元素的分布相差較大(圖4-11)。上述元素組成特點表明石油與有機質在成因上密切相關,而且有機質向石油的演化過程是一個脫氧、加氫、富碳的過程。

圖4-11 有機質、石油和泥岩中25種微量元素深濃度的分布

石油的烴類組成可以用各族烴在石油中所佔的百分含量來表示,主要包括以下三個部分:飽和烴,包括正構、異構烷烴和環烷烴,約佔57.2%;芳香烴,包括芳香烴、環烷芳香烴和環狀的含硫化合物,約佔28.6%;膠質和瀝青質,約佔14.2%。瀝青質和膠質是含氧、氮、硫原子的多環分子,分子量高,其含量多少決定了石油的密度、黏度的大小。

(二)天然氣的化學組成及其類型

廣義地講,一切經自然過程生成的氣體都叫做天然氣。除宇宙氣體外,它們在成因上與地殼中有機質分解和裂解作用、岩石變質作用、岩漿作用、地幔去氣作用等有關。天然產出的氣體大多以分散形式存在,只有少部分聚集起來形成了有經濟價值的礦藏。狹義地講,天然氣是指在沉積有機質演化過程中生成的可燃氣體。這類氣體由烴類氣和非烴類氣組成。不同成因類型、不同地區的天然氣的組成變化較大。

烴類氣體中CH4所佔的比例最高,此外還有數量不等的C2~C6烴類。根據CH4以上重烴(C2+)的含量,可將天然氣分為干氣和濕氣。C2+低於5%的為干氣,干氣不與油伴生,可形成純氣藏。C2+大於5%的為濕氣,常與油伴生。

非烴類氣包括CO2、H2S、N2和少量稀有氣體,其含量一般不高(小於10%)。在個別地區的天然氣中,CO2、H2S、N2含量很高,可形成CO2、H2S、N2氣田。

根據天然氣的成因類型,可將天然氣分成生物成因氣、油型氣和煤成氣。生物成因氣是指在成岩作用階段,沉積物中的有機質經厭氧微生物的發酵作用而形成的氣體。其中CH4的含量高達98%以上,重烴的含量小於1%,其他的是CO2和N2。油型氣(包括濕氣、凝析氣和裂解氣)是在沉積有機質熱裂解成油過程中與石油同時形成的,或在過成熟階段由有機質和液態烴熱裂解形成。煤成氣是指煤系地層或亞煤系地層中的有機質在整個煤化過程中形成的天然氣。

Ⅳ 石油的化學組成

石油的化學組成可以從組成石油的元素、化合物、餾分和組分加以認識,必須明確這是從不同側面去認識同一問題。

(一)石油的元素組成

由於石油沒有確定的化學成分,因而也就沒有確定的元素組成。但其元素組成還是有一定的變化范圍。

石油的元素組成主要是碳(C)和氫(H),其次是硫(S)、氮(N)、氧(O)。世界上大多數石油的元素組成一般為:碳含量介於80%~88%之間,氫含量佔10%~14%,硫、氮、氧總量在0.3%~7%之間變化,一般低於2%~3%,個別石油含硫量可高達10%。世界各地原油的元素組成盡管千差萬別,但均以碳、氫兩種元素占絕對優勢,一般在95%~99%之間。碳、氫元素重量比介於5.7~7.7之間,平均值約為6.5。原子比的平均值約為0.57(或1∶1.8)。

石油中硫含量,據蒂索(B.P.Tissot,1978)等對9347個樣品的統計,平均為0.65%(重量),其頻率分布具雙峰型(圖2-2),多數樣品(約7500個)的含硫量小於1%,少數樣品(1800個)的含硫量大於1%,1%處為兩峰的交叉點。根據含硫量可把原油概略地分為高硫原油(含硫量大於1%)和低硫原油(含硫量小於1%)。原油中的硫主要來自有機物的蛋白質和圍岩的含硫酸鹽礦物如石膏等,故產於海相環境的石油較形成於陸相環境的石油含硫量高。由於硫具有腐蝕性,因此含硫量的高低關繫到石油的品質。含硫量變化范圍很大,從萬分之幾到百分之幾。

圖2-2 不同時代和成因的9347個石油樣品中含硫分布(據Tissot&Welte,1978)

石油中含氮量在0.1%~1.7%之間,平均值0.094%。90%以上的原油含氮量小於0.2%,最高可達1.7%(美國文圖拉盆地的石油),通常以0.25%作為貧氮和富氮石油的界限。

石油的含氧量在0.1%~4.5%之間,主要與其氧化變質程度有關。

石油的元素組成,不同研究者的估算值不甚一致。通常碳、氫兩元素主要賦存在烴類化合物中,是石油的主體,而硫、氮、氧元素組成的化合物大多富集在渣油或膠質和瀝青質中。

除上述5種主要元素之外,還從原油灰分(石油燃燒後的殘渣)中發現有50多種元素。這些元素雖然種類繁多,但總量僅占石油重量的十萬分之幾到萬分之幾,在石油中屬微量元素。石油中的微量元素,以釩、鎳兩種元素含量高、分布普遍,且由於其與石油成因有關聯,故最為石油地質學家重視。V/Ni比值可作為區分是來自海相環境還是陸相環境沉積物的標志之一。一般認為V/Ni>1是來自海相環境,V/Ni<1是來自陸相環境。

(二)石油的化合物組成

概要地說,組成石油的化合物多是有機化合物,作為雜質混入的無機化合物不多,含量甚微,可以忽略不計。組成石油的5種主要元素構成的化合物是一個龐大的家族———有機化合物。現今從全世界經過分析的不同原油中分離出來的有機化合物有近500種,還不包括有機金屬化合物。其中約200種為非烴,其餘為烴類。原油的大半部分是由150種烴類組成。石油的化合物組成,歸納起來可以分為烴類和非烴類化合物兩大類,其中烴類化合物是主要的,這與元素組成以C、H占絕對優勢相一致。

1.烴類化合物

在化學上,烴類可以分為兩大類:飽和烴和不飽和烴。

(1)飽和烴

在石油中飽和烴在數量上佔大多數,一般占石油所有組分的50%~60%。可細分為正構烷烴、異構烷烴和環烷烴。

正構烷烴平均占石油體積的15%~20%,輕質原油可達30%以上,而重質原油可小於15%。石油中已鑒定出的正烷烴為C1—C45,個別報道曾提及見有C60的正烷烴,但石油大部分正烷烴碳數≤C35。在常溫常壓下,正烷烴C1—C4為氣態,C5—C15為液態,C16以上為固態(天然石蠟)。

不同類型原油的正構烷烴分布情況如圖2-3所示。由圖可見,盡管正構烷烴的分布曲線形態各異,但均呈一條連續的曲線,且奇碳數與偶碳數烴的含量總數近於相等。根據主峰碳數的位置和形態,可將正烷烴分布曲線分為三種基本類型:①主峰碳小於C15,且主峰區較窄;②主峰碳大於C25,主峰區較寬;③主峰區在C15—C25之間,主峰區寬。上述正烷烴的分布特點與成油原始有機質、成油環境和成熟度有密切關系,因而常用於石油的成因研究和油源對比。

石油中帶支鏈(側鏈)的異構烷烴以≤C10為主,常見於C6—C8中;C11—C25較少,且以異戊間二烯型烷烴最重要。石油中的異戊間二烯型烷烴(圖2-4),一般被認為是從葉綠素的側鏈———植醇演化而來,因而它是石油為生物成因的標志化合物。這種異構烷烴的特點是每四個碳原子帶有一個甲基支鏈。現已從石油中分離出多種異戊間二烯型烷烴化合物,其總量達石油的0.5%。其中研究和應用較多的是2,6,10,14-四甲基十五烷(姥鮫烷)和2,6,10,14-四甲基十六烷(植烷)。研究表明,同一來源的石油,各種異戊二烯型化合物極為相似,因而常用之作為油源對比的標志。

圖2-3 不同類型石油的正構烷烴分布曲線圖(據Martin,1963)

圖2-4 類異戊間二烯型烷烴同系物立體化學結構圖

環烷烴在石油中所佔的比例為20%~40%,平均30%左右。低分子量(≤C10)的環烷烴,尤以環戊烷(C5-五員環)和環己烷(C6-六員環)及其衍生物是石油的重要組成部分,且一般環己烷多於環戊烷。中等到大分子量(C10—C35)的環烷烴可以是單環到六環。石油中環烷烴以單環和雙環為主,占石油中環烷烴的50%~55%,三環約佔20%,四環以上佔25%左右。在石油中多環環烷烴的含量隨成熟度增加而減少,故高成熟原油中1~2環的環烷烴顯著增多。

在常溫常壓下,環丙烷(C3H6)和甲基環丙烷(C4H8)為氣態,除此之外所有其他單環環烷烴均為液態,兩環以上(>C11)的環烷烴為固態。

(2)不飽和烴

石油中的不飽和烴主要是芳香烴和環烷芳香烴,平均占原油重量的20%~45%。此外原油中偶可見有直鏈烯烴。烯烴及不飽和環烴,因其極不穩定,故很少見。

石油中已鑒定出的芳香烴,根據其結構不同可以分為單環、多環和稠環三類,而每個類型的主要分子常常不是母體,而是烷基衍生物。

單環芳烴包括苯、甲苯、二甲苯等。

多環芳烴有聯苯、三苯甲烷等。

稠環芳烴包括萘(二環稠合),蒽和菲(三環稠合)以及苯並蒽和屈(四環稠合)。

芳香烴在石油中以苯、萘、菲三種化合物含量最多,其主要分子也常常以烷基的衍生物出現。如前者通常出現的主要是甲苯,而不是苯。

環烷芳香烴包含一個或幾個縮合芳環,並與飽和環及鏈烷基稠合在一起。石油中最豐富的環烷芳香烴是兩環(一個芳環和一個飽和環)構成的茚滿和萘滿以及它們的甲基衍生物。而最重要的是四環和五環的環烷芳烴,其含量及分布特徵常用於石油的成因研究和油源對比。因為它們大多與甾族和萜族化合物有關(芳構化),而甾族和萜族化合物是典型的生物成因標志化合物。

2.非烴化合物

石油中的非烴化合物是指除C、H兩種主要元素外,還含有硫或氮或氧,抑或金屬原子(主要是釩和鎳)的一大類化合物。石油中這些元素的含量不多,但含這些元素的化合物卻不少,有時可達石油重量的30%。其中又主要是含硫、氮、氧的化合物。

(1)含硫化合物

硫是碳和氫之後的第三個重要元素,含硫的化合物也最為多見。目前石油中已鑒定出的含硫化合物將近100種,多呈硫醇、硫醚、硫化物和噻吩(以含硫的雜環化合物形式存在),在重質石油中含量較為豐富。

石油中所含的硫是一種有害的雜質,因為它容易產生硫化氫(H2S)、硫化鐵(FeS)、亞硫酸(H2SO3)或硫酸(H2SO4)等化合物,對機器、管道、油罐、煉塔等金屬設備造成嚴重腐蝕,所以含硫量常作為評價石油質量的一項重要指標。

通常將含硫量大於2%的石油稱為高硫石油;低於0.5%的稱為低硫石油;介於0.5%~2%之間的稱為含硫石油。一般含硫量較高的石油多產自碳酸鹽岩系和膏鹽岩系含油層,而產自砂岩的石油則含硫較少。我國原油多屬低硫石油(如大慶、任丘、大港、克拉瑪依油田)和含硫石油(如勝利油田)。原蘇聯伊申巴石油含硫量高達2.25%~7%,其他如墨西哥、委內瑞拉和中東的石油含硫量也較高。

(2)含氮化合物

石油中含氮化合物較為少見,平均含量小於0.1%。目前從石油中分離出來的含氮化合物有30多種,主要是以含氮雜環化合物形式存在。可將其分為兩組,一組為鹼性化合物,有吡啶、喹啉、異喹啉、吖啶及其同系物;另一組為非鹼性化合物,有卟啉、吲哚、咔唑及其同系物,其中以含釩和鎳的金屬卟啉化合物最為重要。

原油中的卟啉化合物首先是由特雷勃斯(C.Treibs,1934)發現的。包括初卟啉和脫氧玫紅初卟啉,並提出石油中的卟啉是由植物的葉綠素和動物的氯化血紅素轉化而來。這個發現為石油有機成因說提供了有力的證據,引起了廣泛的注意和重視。目前對卟啉的研究已逐步深入並發現了多種類型。卟啉是以四個吡咯核為基本結構,由4個次甲基(—CH)橋鍵聯結的含氮化合物,又稱族化合物。在石油中卟啉常與釩、鎳等金屬元素形成絡合物,因而又稱為有機金屬化(絡)合物,其基本結構與葉綠素結構極為相似(圖2-5)。

圖2-5 葉綠素(A)與原油中的卟啉(B)、植烷(Ph)、姥鮫烷(Pr)結構比較圖(據G.D.Hobson等,1981)

但是,並不是所有原油中都含有卟啉,有相當一部分原油中不含或僅含痕量。一般中新生代地層中形成的原油含卟啉較多,而古生代地層中石油含卟啉甚低或不含。這可能與卟啉的穩定性差有關。在高溫(>250℃)或氧化條件下,卟啉將發生開環裂解而遭破壞。

此外,原油中的卟啉類型還與沉積環境有密切關系,海相石油富含釩卟啉,而陸相石油富含鎳卟啉。

(3)含氧化合物

石油中含氧化合物已鑒定出50多種,包括有機酸、酚和酮類化合物。其中主要是與酸官能團(—COOH)有關的有機酸,有C2~24的脂肪酸,C5~10的環烷酸,C10~15的類異戊二烯酸。石油中的有機酸和酚(酸性)統稱石油酸,其中以環烷酸最多,占石油酸的95%,主要是五員酸和六員酸。幾乎所有石油中都含有環烷酸,但含量變化較大,在0.03%~1.9%之間。環烷酸易與鹼金屬作用生成環烷酸鹽,環烷酸鹽又特別易溶於水。因此地下水中環烷酸鹽的存在是找油的標志之一。

(三)石油的餾分組成

石油是若干種烴類和非烴有機化合物的混合物,每種化合物都有自己的沸點和凝點。石油的餾分就是利用組成石油的化合物各自具有不同沸點的特性,通過對原油加熱蒸餾,將石油分割成不同沸點范圍的若幹部分,每一部分就是一個餾分。分割所用的溫度區間(餾程)不同,餾分就有所差異(表2-1)。

表2-1 石油的餾分組成

據亨特對美國一種相對密度為35°API(0.85g/cm3)的環烷型原油所做的分析結果,以脫氣後各餾分總和計算,各餾分的體積百分比為:汽油27%,煤油13%,柴油12%,重質瓦斯油10%,潤滑油20%,渣油18%。其與化合物組成的關系如圖2-6所示。

通常石油的煉制過程可以看作就是對石油的分餾,餾程的控制是根據原油的品質及對油品質量的具體要求來確定的。現代煉油工業為了提高石油中輕餾分的產量和提高產品質量,除了採用直餾法外,還採用催化熱裂化、加氫裂化、熱裂解、石油的鉑重整等一系列技術措施。例如在常壓下分餾出的汽油只佔原油的15%~20%,在採用催化熱裂化後,可使汽油的產量提高到50%~80%,以滿足各方面以汽油作能源燃料的需求。

圖2-6 相對密度為35°API的環烷型石油的餾分與化合物組成的關系圖(據J.M.Hunt,1979)

(四)石油的組分組成

石油組分分析是過去在石油研究中曾廣泛使用的一種方法。它是利用有機溶劑和吸附劑對組成石油的化合物具有選擇性溶解和吸附的性能,選用不同有機溶劑和吸附劑,將原油分成若幹部分,每一部分就是一個組分。

一般在作組分分析之前,先對原油進行分餾,去掉低於210℃的輕餾分,切取>210℃的餾分進行組分分析(圖2-7)。凡能溶於氯仿和四氯化碳的組分稱為油質,它們是石油中極性最弱的部分,其成分主要是飽和烴和一部分低分子芳烴。溶於苯的組分稱為苯膠質,其成分主要是芳烴和一些具有芳環結構的含雜元素的化合物(主要為含S、N、O的多環芳烴)。用酒精和苯的混合液(或其他極性更強的如甲醇、丙酮等)作溶劑,可以得到酒精-苯膠質(或其他相應組分),此類膠質的成分主要是含雜元素的非烴化合物。用石油醚分離,溶於石油醚的部分是油質和膠質。其中能被硅膠吸附的部分是膠質;不被硅膠吸附的部分是油質;剩下不溶於石油醚的組分(但可溶於苯、二硫化碳和三氯甲烷等中性有機溶劑,呈膠體溶液,可被硅膠吸附)為瀝青質;後者是渣油的主要組分,其主要成分是結構復雜的大分子非烴化合物。

顯然,石油的組分組成是一個比較模糊的概念,特別是膠質和瀝青質,在石油地質學中使用頻率較高,使用上也不是很嚴謹。膠質和瀝青質是一些分子量較大的復雜化合物的混合體。膠質的視分子量約在300~1200;瀝青的視分子量多大於10000,可能達到甚至於超過50000,其直徑平均為40~50nm。膠質和瀝青質占原油的0~40%,平均為20%。膠質和瀝青質可能主要是由多環芳核或環烷-芳核和雜原子鏈如含S、N、O等的化合物組成,其平均元素組成如表2-2所示,大量分布於未成熟以及經過生物降解和變質的原油中,尤其在天然瀝青礦物或瀝青砂岩中更為多見。

石油的組分在石油的成因演化研究和原油品質評價中經常涉及。

圖2-7 原油組分分析流程圖

表2-2 膠質和瀝青質的平均元素組成

Ⅳ 石油主要成分是什麼

石油的成分主要有:油質(這是其主要成分)、膠質(一種粘性的半固體物質)、瀝青質(暗褐色或黑色脆性固體物質)、碳質。石油是由碳氫化合物為主混合而成的,具有特殊氣味的、有色的可燃性油質液體。

元素組成

石油主要是碳氫化合物。

石油的分子結構

它由不同的碳氫化合物混合組成,組成石油的化學元素主要是碳(83% ~ 87%)、氫(11% ~ 14%),其餘為硫(0.06% ~ 0.8%)、氮(0.02% ~ 1.7%)、氧(0.08% ~ 1.82%)及微量金屬元素(鎳、釩、鐵、銻等)。由碳和氫化合形成的烴類構成石油的主要組成部分,約佔95% ~ 99%,各種烴類按其結構分為:烷烴、環烷烴、芳香烴。

Ⅵ 簡述石油的烴類組成

石油的成分 石油中碳氫兩種元素所組成的化合物,成分很復雜,並且隨產地不同而異。按其結構又分為烷烴(包括直鏈和支鏈烷烴)、環烷烴(多數是烷基環戊烷、烷基環己烷)和芳香烴(多數是烷基苯),一般石油中不含有烯烴。 石油中含硫化合物主要有硫醇(RSH)、硫醚(RSR)、二硫化物(RSSR)和噻吩等。在石油的某些加工產物中還含有硫化氫(H2S)。 石油中含氧化合物主要有環烷酸和酚類(以苯酚為主),此外還含有少量脂肪酸。環烷酸是指含有11~30個碳原子的羧酸,分子中含有一個或多個駢合脂環,羧基可以在脂環上或在側鏈上。如: 在煉油生產中常把環烷酸和酚叫做石油酸。 石油中含氮化合物主要有吡啶、吡咯、喹啉和胺類(RNH2)等。因吡咯在空氣中易氧化,顏色逐漸變深,這踉汽油久存顏色變深有關。 石油的化學組成是沒有一定的,隨產地不同而異。根據含烴的成分不同一般將石油分為烷烴基石油、環烷基石油、混合基石油和芳烴基石油等幾大類。但許多產油國家常根據本國的資源情況而有不同的分類。