㈠ 石油從原油到成品油的煉制工藝過程是什麼詳細點!謝謝了~
石油從地下開采出來就是原油,從原油變為成品油是一個復雜的過程!
首先原油通過集輸,輸轉到煉油廠,經過脫鹽脫水工藝後進入常減壓蒸餾裝置。通過常減壓蒸餾把原油分為汽油餾分、煤油餾分、柴油餾分、重油餾分和渣油等!然後根據產品技術要求經過催化裂化、催化加氫、催化重整、烷基化等等工藝生產出各種組分油和三烯三苯等化工原料,然後根據產品技術要求,利用添加劑和組分油調合成成品油!
㈡ 如果某一天石油枯竭了,那還有什麼可以用來作化工原料
沒有石油了還能用天然氣,海氣儲量現探測已經比石油用的時間會長好一段
㈢ 石油化工廢水處理方法
石油化工廢水處理方法具體內容是什麼,下面中達咨詢為大家解答。
隨著油田開采期的延長,尤其是油田開發的中後期,原油含水量越來越高,而無水開采期則越來越短,目前我國大部分油田原油綜合含水率己達80%,有的甚至達到90%,每年採油廢水的產生量約為4.1億t,成為主要的含油污水源。含油污水中的石油類主要由浮跡高油、分散油、乳化油、膠體溶解物質和懸浮固體等組成。
石油從地下開采出來,經過脫水穩定處理後進入到集輸管線,然後輸到煉油廠或油庫,在廠內再次進行脫水、脫鹽處理,當原油中含水量小於或等於0.5%,含鹽量小於5000mg/L後,方可進入到常減壓裝置。在加熱爐內將原油加熱到350℃以上,然後進行常壓蒸餾、減壓蒸餾,分割出汽油、煤油、柴油、潤滑油餾分,常壓重油和減壓渣油作為二次加工的原料。為了提高產品質量及原油的綜合利用串,在煉油廠還要進行二次加工,主要裝置有催化裂化、鉑重整、加氫、糠醛精製、聚丙烯、焦化、氧化瀝青等多套裝置,由於這氏州拿些裝置均採用物理分離和化學反應相結合的方法,生產過程往往是在高溫下進行的,這就需要消耗燃料及冷卻介質(水)。
在工藝汽提及注水、產品精製水洗水和機泵軸封冷卻水等工藝中,水和油品要直接接觸,因而產生含油污水,含酚污水等。
因為石油化工廢水的處理難度大,不僅濃度高,而且難以溶解。因而,在石油化工廢水的處理中,一般要用到化學成分。典型的就是化學法、物理法和生化處理技術。
1、化學法
化學法是指在石油化工廢水的處理中,使用化學成分使廢水中的污染成分分解、溶解或凝集的方法,從而達到處理廢水的目的,避免環境污染。
1.1絮凝
石化污水處理的重要過程之一是絮凝,即通過向水中投加絮凝劑破壞水中膠體顆粒的穩態,膠粒之間的相互碰撞和聚集,形成易於從水中分離的絮狀物質。絮凝可以用來處理煉油廢水中的濁度、色度、有機污染物、浮游生物和藻類等污染物成分。在具體操作中,絮凝通常與氣浮或者沉澱等工藝聯用,作為生化處理的預處理。目前,採用微生物絮凝劑,利用生物技術製成的廢水處理劑,同其它絮凝劑相比具有許多優點,比如,易生物降解、適用范圍廣、熱穩定性強、高效和無二次污染等,因此應用前景廣闊。
1.2氧化法
氧化法主要有光催化氧化法、濕式氧化法和臭氧氧化法。針對不同成分的石油化工廢水,可以選擇不同的方法,這樣可以達到最有效、最經濟、最安全的處理廢水的目的。
1)光催化氧化法。光催化氧化法,可以有效地將光輻射與O2、H2O2等氧化劑結合起來,從而達到處理污水的目的,因此稱為光催化氧化。有人以太陽光為光源,以TiO2、TiO2/Pt、ZnO 等為催化劑,用此法處理含有21 種有機污染物的水,得到的最終產物都是CO2,不產生二次污染。還有人用Fe2+和H2O2作氧化劑, 鐵離子與紫外光之間存在協同效應,使H2O2分解產生氫氧根的速度大大加快,因此氧化效率得到提高,該法在許多國家尚處於研究階段。
2)濕式氧化法。濕式氧化法可以分為兩類,分別是催化濕式氧化(CWO)和濕式空氣氧化(WAO)。CWO是將有機物在高溫、高壓及催化劑存在條件下,氧化分解為CO2、H2O和N2等無毒無害物質的過程,它反應時間更短、轉化效率更高,但pH、催化劑活性對反應影響較大。WAO是利用空氣中的分子氧在高溫高壓條件下進行液相氧化的工藝過程,該技術是有效控制環境污染物的良好途徑,特別適宜於有毒有害污染物或高濃度難降解有機污染物的處理。盧義成等用濕式空氣氧化工藝處理石化廢液,COD、無機硫化物、硫代硫酸鹽和總酚的去除率平均為81.8%、近100%、91.7%、近100%。結果表明該法在處理效果上已經達到國外同類設備的處理效能。
3)臭氧氧化法。臭氧氧化法有其獨到的優點:這種方法氧化時不產生污泥和二次污染。但是,其運行及投資費用高,且處理的廢水流量不宜過大。經臭氧氧化後,廢水中的小部分有機物被徹殲搭底氧化為水和二氧化碳,而大部分轉化為氧化中間產物。一般將臭氧氧化和生物活性炭吸附聯用技術用於深度處理, 在氧化有機物的同時臭氧迅速分解為氧,使活性炭床處於富氧狀態,得到再生,提高其使用周期;同時活性炭表面好氧微生物的活性增強,降解吸附有機物的能力提高。能有效去除有機物,改變有機物生色基團的結構,強化活性炭的脫色能力。黎松強等用臭氧-活性炭工藝深度處理煉油廢水,COD、氨氮、揮發酚、石油類的去除率平均為82.6%、93.4%、99.5%、94.3%,出水主要指標達到地面水Ⅳ類水質標准。
2、物理法
1)吸附。吸附,指的就是利用固體物質的多孔性,使廢水中的污染物附著在其表面而得以去除的方法。常用的吸附劑為活性炭,可有效去除COD、廢水色度和臭味等,但其處理成本較高,而且容易造成二次污染。在石化廢水處理中,吸附常與絮凝或臭氧氧化聯用。
2)膜分離。膜分離有微濾、超濾、反滲透和納濾等不同的方法,無論哪種方法,都能有效去除廢水的臭味、色度,去除有機物、多種離子和微生物,出水水質穩定可靠。
3)氣浮法。氣浮,指的是利用高度分散的微小氣泡,作為載體粘附廢水中的懸浮物,使之隨氣泡浮升到水面而加以分離,分離對象為疏水性細微固體懸浮物以及石化油。在石化廢水處理中,氣浮常置於隔油、絮凝之後。比如,將渦凹氣浮(CAF)系統放置於隔油池後處理含油石化廢水, 進水含油約200mg/L,出水含油低於10mg/L,去除率達到95%。試驗證明氣浮處理廢水的效果是可靠的。
3、生化法
1)好氧處理。在石油化工廢水處理中,好氧處理方法比較多,比如序批式間歇活性污泥法、高效好氧生物反應器、生物接觸氧化、膜生物反應器處理法等,但單獨使用好氧生物處理較少,主要是與厭氧處理相結合。
2)厭氧處理。石化廢水COD高、可生化性較差,一般先進行厭氧預處理以提高後續處理的可生化性。①升流式厭氧污泥床。UASB反應器內污泥濃度高,一般平均污泥質量濃度為30~40g/L。有機負荷高,水利停留時間短,中溫消化,COD的容積負荷一般為10~20kg/(m3・d)。反應區內設三相分離器,被沉澱區分離的污泥能夠自動迴流到反應區,無混合攪拌設備。污泥床內不填載體,造價低。一般用於高濃度有機廢水的處理。②厭氧固定膜反應器。厭氧固定膜反應器中裝有固定填料,能夠截留和附著大量厭氧微生物,通過其作用,進水中的有機物轉化為甲烷和二氧化碳等從而得以去除,具有抗沖擊負荷能力強、微生物停留時間長和運行管理方便等優點。
3)組合工藝。石油化工廢水具有污染物種類較多,因此水質情況復雜,如採用單一的好氧或厭氧處理,很難達到排放要求,而將厭氧(或缺氧)和好氧處理有效結合的組合工藝處理效果好,有較廣泛應用。比如,採用A/O 工藝的新型組合A/O1、O2工藝處理石油化工廢水,系統由泥法好氧、膜法缺氧和膜法好氧組成。進水COD為1300mg/L,總HRT為60h(分別為20h),出水BOD、COD、MLSS、含油分別低於(30、100、70、10)mg/L。
石油化工企業含油污水具有水量波動大、水質波動頻繁、污染物成分非常復雜的特點,其中含有大量的油、硫化物、揮發酚等有毒有害物質,直接排放將對環境造成極大的危害。含油污水處理工藝和回用工藝的正確選擇,是關繫到污水場和回用裝置能否正常運行的關鍵,也是控制投資實現經濟運行的關鍵。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈣ 如果石油資源開采完了 會對人類活動產生哪些影響
只不過開采完以後,後人會幾十萬年也看不到石油了,石油埋在地底就只是沉睡,跟廢物沒有區別。至於說到能源危機,我看也不必擔心,以前人們沒有開採石油,日子過得好好的,以後如果沒有了石油,會有新的能源出現。
石油資源的枯竭意味著工業喪失了發展的主要動力(包括運輸、電力、交通),各種高分子材料、大量使用的各類溶劑、香精、燃料也失去了原料來源。
我們要珍惜資源。
㈤ 石油開采出來後煉油的過程
石油煉制工業
石油煉制工業
石油工業的一個重要組成部分,是把原油通過石油煉制過程加工為各種石油產品的工業。包括石油煉廠、石油煉制的研究和設計機構等,石油煉廠中的主要生產裝置通常有:原油蒸餾(常、減壓蒸餾)、熱裂化、催化裂化、加氫裂化、石油焦化、催化重整以及煉廠氣加工、石油產品精製等,主要生產汽油、噴氣燃料、煤油、柴油、燃料油、潤滑油、石油蠟、石油瀝青、石油焦和各種石油化工原料。
重要性 石油煉制工業和國民經濟的發展十分密切,無論工業、農業、交通運輸和國防建設都離不開石油產品。石油燃料是使用方便、較潔凈、能量利用效率較高的液體燃料。各種高速度、大功率的交通運輸工具和軍用機動設備,如飛機、汽車、內燃機車、拖拉機、坦克、船舶和艦艇,它們的燃料主要都是石油煉制工業提供的。一架波音707飛機飛行1000km要用噴氣燃料6t;一輛4t載重汽車百噸公里耗油約5kg;一輛 4t柴油汽車百噸公里耗柴油約3kg;一標准台拖拉機年耗柴油約4t以上。
處在運動中的機械,都需要一定數量的各種潤滑劑(潤滑油、潤滑脂),以減少機件的磨擦和延長使用壽命。當前,潤滑劑的品種達數百種,絕大多數是由石油煉制工業生產的。
石油煉制工業提供的石油化工原料,可用於生產合成纖維、合成橡膠、塑料以及化肥、農葯等。
世界概況 1984年,世界原油總加工能力約 3.7Gt,煉廠數約 700餘座。年加工量在70Mt以上者有11個國家,其中最大的是美國,約佔世界總量的五分之一,其次是蘇聯、日本和西歐一些國家(見表1984年世界主要國家原油加工能力和煉廠數)。為了節省投資和降低生產費用,現代煉油廠的年加工原油量均在3.5Mt以上,有的已超過10Mt。
世界主要煉油國家油品消費結構中,以汽油、柴油和燃料油的消費量最大。日本和西歐的一些國家因煤和天然氣短缺,電站鍋爐和工業窯爐大量使用原油常減壓蒸餾的渣油作為燃料油,因而煉油廠的加工深度較淺,催化裂化、石油焦化、加氫裂化等裝置所佔的比例較小。而美國等因煤和天然氣較多,可用作鍋爐燃料,還由於汽油需用量很大,故煉油廠多為深度加工,大部分渣油被加工轉化為汽油。
中國概況 中國是最早發現和利用石油的國家之一(見石油煉制工業發展史),但近代石油煉制工業是在中華人民共和國成立後,隨著大慶油田的開發和原油產量的增長才得到迅速發展的。1983年原油加工能力已超過100kt,1984年居世界第7位。而且加工手段和石油產品品種比較齊全,裝置具有相當規模和一定技術水平,已成為一個能基本滿足國內需要,並有部分出口的加工行業。
1983年石油產品消費結構中,直接作為燃料的重油消耗量較大,正逐步加以調整。石油煉廠規模年產在 2.5Mt以上的有22個,煉廠主要分布在東北、華東、中南和華北地區。煉油廠裝置的組成是根據中國原油特點和產品需要而確定的。中國大多數原油含重餾分多、含蠟量高、含硫量低。因此,催化裂化、焦化、熱裂化、加氫裂化等二次加工裝置所佔的比例達三分之一以上,而加氫精製和催化重整所佔比例相對較低。
發展趨勢 從1973年開始,原油國際市場價格上漲,並由於世界很多油田開采已處於中後期,輕質原油開采量減少,重質原油產量相對增加。此外,國際上對環境保護日益重視,對石油產品質量要求更高。這些因素促使近年來石油煉制工業發生以下重大變化:
①世界原油加工能力的增長速度減慢 發達國家的原油加工能力過剩,開工率降到60%~70%,在此期間,中東產油國的石油煉制工業則迅速發展。
②石油產品結構發生較大變化 燃料油需要量大幅度減少,噴氣燃料、柴油等中間餾分需要量增加,因而原油深度加工受到普遍重視,減粘裂化、催化裂化、加氫裂化、石油焦化等生產輕質油品的裝置增建較多。與此同時,還開發了很多加工重質餾分油和渣油的新工藝。
③節能技術有了很大發展 採取了整頓性措施,如對設備和管線進行保溫,消除泄漏,加強換熱,降低加熱爐排煙溫度等。並逐步實施節能新技術,如採用加熱爐新型燃燒火嘴和各種空氣預熱器,催化裂化裝置使用CO助燃劑、配備CO鍋爐和煙氣能量回收機組,採用新型填料和乾式減壓蒸餾、低溫熱量致冷和發電、熱泵、多效蒸發、液力透平等。從而使每噸原油的加工能耗明顯降低。例如:美國1981年比1972年減少20%;中國1983年比1978年降低30.7%。
④環境保護日益受到重視 石油煉制工業的污水、廢氣、廢渣排放量很大,是很大的污染源。近年來,各國都制定了很多法律、標准,限制污染;同時開發和實施了很多環境保護新技術,如大量採用空氣冷卻器以減少冷卻用水、污水深度處理和回用、煉廠尾氣深度處理,以及大力發展加氫處理和加氫精製工藝等,逐步實現無污水排放煉廠、清潔煉廠等。
⑤採用先進加工工藝和發展催化劑、添加劑,以增產輕質油品和提高油品質量 為了增加汽油的辛烷值和減少四乙基鉛添加量,很多國家廣泛採用催化重整、異構化、烷基化工藝。為脫除石油產品中硫、氮等雜質以及改善油品的安定性和顏色,加氫處理和加氫精製工藝日益受到重視。中國廣泛應用了提升管催化裂化、多金屬催化重整、分子篩脫蠟等新工藝。
⑥注意原油的綜合利用,增產石油化工原料 石油煉制工業和石油化工、三大合成材料(合成纖維、合成橡膠、塑料)工業的關系更加密切,成為發展石油化學工業的基礎。
㈥ 石油化工廢水的處理方法
石油化工廢水的處理方法具體內容是什麼,下面中達咨詢為大家解答。
隨著社會需要的不斷增加,油田的勘探開發規模也不斷擴大,油田開發進入到中後期,高含水性越來越明顯,目前我國在開發油田的含水率都較高,採油廢水的產生量也成為主要的含油污水源。含油污水中的石油類污染成分主要有:浮油、分散油、乳化油和懸浮固體等。這些物質在隨廢水排除後都難以在自然環境中降解,且對自然環境的危害性極大,所以研究石油化工廢水的處理方法具有深遠的現實意義。
開采出來的原油經過初期簡單處理後通過集輸管線輸送到煉油廠,在煉油廠需要經過脫水等處理,然後再利用常減壓設備對其進行蒸餾和減壓蒸餾,分割出汽油、柴油等,對常壓重油和減壓渣油需要進行再加工處理,再加工採用高溫下的物理、化學相結合的方法,再加工程序需要耗費大量的燃料和冷卻水。在煉油技術應用過程中,油和水直接接觸,所以形成了含油污水,含油污水具有濃度高、難溶解的特點,處理難度大,一經排出即會對環境產生嚴重的污染和危害。如何處理含有污水是一項值得研究的課題。
1 化學方法處理石油化工廢水
用化學方法處理石油化工廢水是指使用化學成分來分解、溶解或者凝集廢水中的污染成分,再對廢水進行處理降低環境污染的方法。
1.1 絮凝
絮凝是石油化工廢水處理的一個重要過程,是指通過向廢水中施加絮凝劑來使肺水中的膠體顆粒受到破壞膠體顆粒被破壞後相互碰撞和聚集,經過絮凝所形成的物質更加容易被從廢水中分離出來。絮凝法對處理石油化工廢水中的有機污染物、浮游生物和藻類等污染物效果較為顯著。在應用中絮凝通常需要和沉澱或氣浮技術方法並用,對廢水進行初步處理。在實踐中採用較多的是利用微生物絮凝劑來處理石油化工廢水,該方法在適用范圍上更廣,降解性能強,效率高且不存在二次污染,在今後的石油化工污水處理上該方法具有廣闊的發展前景。
1.2 氧化
氧化法本身又有多種分類,主要是石油化工企業產生的廢水在成分上具有巨大的差異,所以要針對其成分特點選擇具體的氧化方法,以實現高效、最經濟、最安全的處理石油化工廢水的目的。在此介紹幾種典型的氧化方法和適用范圍:第一,利用光催化氧化法處理含有21種有機污染物的污水,效果顯著,且不會產生二次污染,該方法屬於最新的處理石油化工污水的技術方法,目前還在研究和完善中;第二,利用濕式氧化法對含有有毒有害污染物和高濃度難降解的有機污染物進行處理,經過實踐調查研究,利用濕氧化法處理石油化工廢水時COD、無機硫化物等物質的去除率分別能達到81.8%和100%。該技術方法在應用上效果顯著,能夠有效的控制環境污染物,我國通過濕式氧化法處理石油化工廢水在效果上已經達到了國外同類設備處理石油化工廢水的效果;第三,利用臭氧化法與生物活性炭吸附技術相結合對石油化工廢水進行深度處理,能夠有效氧化有機污染物,同時提高活性炭的含氧量,延長使用期限,降解效果顯著。
2 物理方法處理石油化工廢水
物理方法處理石油化工廢水也有諸多的分類:
2.1 吸附
吸附是指通過利用固體物質的多孔性來吸附廢水中的污染物的物理方法,吸附一般選用活性炭,因為活性炭具有較強的吸附性能,處理廢水效果好,但是吸附方法在應用上具有成本高、易造成二次污染等缺陷,所以吸附方法需要和上文提到的絮凝和臭氧氧化方法結合運用。
2.2 膜分離
膜分離污水處理方法在類型上也表現為多樣化,如微濾、超濾及反滲透等,在實踐應用中膜分離技術方法在去除石油化工廢水的臭味、色度上都具有十分顯著的效果,還能夠有效去除有機污染物和微生物,該技術方法具有穩定可靠的應用價值。
2.3 氣浮法
氣浮法是通過投放分散度高的小氣泡哎粘附石油化工中的懸浮物,小氣泡在廢水中浮升到水面也會把附著物帶出並使油類物質分離。在石油化工廢水的處理程序中,氣浮法是在經過絮凝工序後應用的技術方法,經過實踐表明,氣浮法在處理石油化工廢水中具有穩定可靠的效果,值得繼續推廣,誇大其使用范圍。
3 生化方法處理石油化工廢水
3.1 好氧處理
好氧處理的方法種類較多,在石油化工廢水處理中可以應用的好氧處理方法有高效好氧生物反應器、生物接觸氧化等技術方法,這一方法一般都與厭氧處理方法相結合應用,很少單獨在石油化工污水處理中使用。
3.2 厭氧處理
石油化工廢水可生化性能差異在處理上一般需要先進行厭氧處理來提高其在後續的處理中的可生化性。厭氧處理方法主要有兩類:其一是在高濃度有機廢水的處理中應用的升流式厭氧污泥床,不但成本低,效果也十分顯著;其二是厭氧固定膜反應器,能夠有效截留附著污水中的厭氧微生物,將污水中的有機污染物進行轉化後去除,該技術方法具有簡單便捷、應用時效長的特點,也具有深遠的應用價值和推廣必要。
3.3 組合法
石油化工廢水的污染種類復雜多樣,在不同的煉油廠廢水水質表現得不盡相同,所以在處理方法上也不能單一的使用某種方法,所以將好氧處理方法與厭氧處理方法有效結合在處理效果上必將更加有效。這種組合的處理方法經過在石油化工廢水處理中應用,效果非常好,所以值得在應用中加以推廣,來為廢水處理提供更加安全可靠的技術方法。
4 結語
石油化工廢水具有復雜的污染物成分,含有的有毒有害物質對環境和人們的身體健康都有不利的影響,鑒於其特性必然需要對其進行相應的處理,降低排入外界的污水的危害。對石油化工這類含油污水處理需要綜合利用物理、化學、生物等方法,針對不同的污水水質特點選擇不同的處理方法,在達到最佳的處理效果的同時降低成本,避免二次污染。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈦ 作為不可再生能源,如果石油被人類用完了怎麼辦
使用其他能源,氫能、太陽能、核能、水能等等。
替代能源和可再生能源的開發將可以從本質上解決無油時代全球的能源問題。在近期,人們可以逐步發展多種可再生能源,減少石油的消耗量。從長遠來看,天然氣,煤炭,核能和可再生能源風能,太陽能,水利,生物能,甚至是地熱能都可用於滿足人類的能源需求。
那是因為我們還可以找到更為廉價的石油,天然氣,煤等不可再生能源。但當能源將近枯竭時,昂貴的開采成本和高昂的價格必然促使人們向利用可再生資源的方向去轉變。ps:補充一點,潮汐能也算是一種可再生能源。
㈧ 石油枯竭後,拿什麼生產塑料
如果有一天石油資源耗盡,高分子產業怎麼辦?很多小夥伴可能並不清楚高分子產業與石油產業有什麼聯系。其實很好理解,所有高分子材料都是來自於相應的單體,比如聚乙烯的單體是乙烯,乙烯怎麼來的?石油的裂解。再比如PET(絕大多數礦泉水瓶的成分),單體之一是對苯二甲酸衍生物,前體是對二甲苯(這個東西就是被廣大無知群眾妖魔化的PX),對二甲苯怎麼來的?也是從石油里煉出來的。所以說,高分子工業是建立在石油工業之上的。如果沒有了石油,所謂巧婦難為無米之炊,整個高分子工業,甚至整個現代文明生活必將受到極大影響。
怎麼辦?科學家與工程師們都愁壞了。真要有那麼一天,大家都沒工作了,估計窮的都要吃樹皮了。
好在天無絕人之路,雖然石油枯竭那一天還還很遙遠,但是有識之士還是想出了一些辦法,答案就在「樹皮」,這一類可再生資源。什麼意思呢?以往聚合物材料的單體最原始原料不都是來自於石油嗎,那就想想辦法看看其他地方能不能找到這些初始的原料呢。找來找去就發現,利用植物和微生物就可以制備很多初始的化工原料啊,這么多年來這些植物一歲一枯榮的真是白白浪費掉了,不過好在它們可以春風吹又生;順手科學家們又看了看植物體內還有啥好東西呢?這一找不要緊,發現植物裡面還有通過石油工業無法規模生產的單體或聚合物。這里我們要注意到,人們只需要解決一些上游原料的來源,許多下游化學品來源問題變迎刃而解,進而衍生出更加多樣的聚合物種類。如下圖。
其他類似的多糖類聚合物,比如甲殼素(就是蝦類、甲殼蟲類身上硬殼的主要成分)、殼聚糖(脫乙醯基的甲殼素)、澱粉類,以及木質素、木質素纖維,都是化學家們的重點研究對象,已經取得了不錯的研究成果。
好了,說了這么多好聽的,也要潑點冷水了。可再生資源聚合物雖然前景廣闊,但是要想全面實現產業化阻礙也不小。
最實際的問題,就是生產成本問題。雖然企業家們天天被變來變去的石油原料化學品價格搞得焦頭爛額,但是平均起來還是比全新路線的可再生聚合物明顯便宜。就如同前面所說,在還沒有火燒眉毛的時代,大多數企業,尤其是中小型企業,其實並不願意去改變生產工藝,今朝有酒今朝醉嘛。另一方面,生產成本的提高也就意味著終端產品價格的提高,並不是所有人都會為了綠色產業發展而買這筆賬。
其次,那些新型結構的高分子材料,它們的性能跟現有的產品是否有足夠的可比性?尤其是很多生物基原料中氧元素的含量是比較高的,與傳統的聚乙烯、聚丙烯類全碳鏈聚合物相比更加易燃、熱穩定性和水解穩定性也更差。這些都是要考慮的問題。
再次,從上面所述的也可以看出來,生物基的方法很多是要使用糧食的。這個問題就比較嚴峻了,全世界還有那麼多人食不果腹,尤其是非洲弟兄們還處於水深火熱之中,又要把糧食分去一部分來用於化工生產,你讓非洲兄弟怎麼想?何況本來世界上用於生產糧食的耕地就少的可憐。因此,盡可能少地佔用耕地,盡可能不使用糧食作物作為原料來源都是要面臨的問題。
參考文獻:
1. Gallezot, P., Conversion ofbiomass to selected chemical procts. Chem. Soc. Rev. 2012, 41(4), 1538-1558.
2. Byrne, C. M.; Allen, S. D.;Lobkovsky, E. B.; Coates, G. W., Alternating Copolymerization of Limonene Oxideand Carbon Dioxide. J. Am. Chem. Soc. 2004, 126 (37),11404-11405.
3. Kember,M. R.; Williams, C. K., Efficient Magnesium Catalysts for the Copolymerizationof Epoxides and CO2; Using Water to Synthesize Polycarbonate Polyols. J. Am.Chem. Soc. 2012, 134 (38), 15676-15679.
4. Lu,X.-B.; Ren, W.-M.; Wu, G.-P., CO2 Copolymers from Epoxides: Catalyst Activity,Proct Selectivity, and Stereochemistry Control. Acc. Chem. Res. 2012,45 (10), 1721-1735.
5. Gandini,A.; Lacerda, T. M., From monomers to polymers from renewable resources: Recentadvances. Progress in Polymer Science 2015, 48, 1-39.
6. Rockstrom, J.; Steffen, W.;Noone, K.; Persson, A.; Chapin, F. S.; Lambin, E. F.; Lenton, T. M.; Scheffer,M.; Folke, C.; Schellnhuber, H. J.; Nykvist, B.; de Wit, C. A.; Hughes, T.; vander Leeuw, S.; Rodhe, H.; Sorlin, S.; Snyder, P. K.; Costanza, R.; Svedin, U.;Falkenmark, M.; Karlberg, L.; Corell, R. W.; Fabry, V. J.; Hansen, J.; Walker,B.; Liverman, D.; Richardson, K.; Crutzen, P.; Foley, J. A., A safe operatingspace for humanity. Nature 2009, 461 (7263), 472-475.
7. Chung, W. J.; Griebel, J. J.;Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.;Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi?rpád; Theato,P.; Mackay, M. E.; Sung, Y.-E.; Char, K.; Pyun, J., The use of elemental sulfuras an alternative feedstock for polymeric materials. Nat. Chem. 2013,5 (6), 518-524.
本文首發於微信公眾號「高分子文獻速遞」,作者娃哈哈。轉載請與該公眾號聯系。