當前位置:首頁 » 石油礦藏 » 怎麼把石油變成氣
擴展閱讀
補接種狂犬疫苗費用多少 2025-02-02 05:36:36
香港賓倫手錶是什麼價格 2025-02-02 05:35:54

怎麼把石油變成氣

發布時間: 2023-12-26 03:31:59

❶ 石油和天然氣的形成經過哪些化學變化

石油的形成:
石油主要由碳氫化合物組成。在岩層孔隙內,常以液體或氣態(天然氣)存在;有時部份凝結成固態。

石油是古代生物遺骸,堆積在湖裡、海里,或是陸地上,經高溫、高壓的作用,由復雜的生物及化學作用轉化而成的。

石油在地層中一點一滴地生成,並浮游於地層中。由於浮力的關系,油點在每年緩慢地沿著地層或斷層向上移動,直到受不透油的封閉地層阻擋而停留下來。當此封閉內的油點越聚越多,便形成了油田。

儲油氣構造

一個良好的儲存油氣的封閉構造,除應具有良好的孔隙率及滲透率的儲油層外,此儲油層的上方必須有緻密不透油、氣、水的岩層,如頁岩、泥岩等,這就是所謂的蓋層,其作用為封蓋住進來的油氣,不讓油氣向上逃逸。

一般常見的儲油氣封閉構造依其型態可分為構造封閉如背斜、斷層等,及地層封閉,聯合封閉。

天然氣的形成:

根據形成機理天然氣可劃分為有機成因氣和無機成因氣兩大類。所謂有機成因氣是指分散的沉積有機質或可燃有機礦產(油、煤和油頁岩),在其成岩成熟過程中,由微生物降解和熱解作用形成的以烴氣為主的天然氣,就目前的研究程度來看,現今發現的天然氣絕大部分屬於有機成因氣。顯然,這是一個非常龐大的類型。由前面的敘述可知,根據成氣的主要作用因素,可進一步將有機成因氣分為生物成因氣(包括成岩氣)和熱解氣;後者是有機成因氣的主體,還可根據成氣有機質類型的不同再進一步劃分:將由成油有機質(Ⅰ、Ⅱ型乾酪根)形成與石油相伴生成的天然氣稱為油型氣;而將Ⅲ型乾酪根和成煤有機質在成煤變質過程中形成的天然氣稱為煤型氣。這樣就將天然氣劃分為四種基本的成因類型,即生物成因氣、油型氣、煤型氣和無機成因氣(表)。
有關各類型有機成因氣與有機質演化各個階段的關系見表。
天然氣成因詳細資料:
http://202.115.138.28/2004/shiyoudixue/2e-3.htm

❷ 煤石油天然氣是怎麼形成的

煤、石油、天然氣都是常用的燃料,那麼煤石油天然氣是怎麼形成的?我在此整理了煤石油天然氣的形成原因,供大家參閱,希望大家在閱讀過程中有所收獲!

煤的形成原因

煤炭,簡稱煤,是遠古植物遺骸,埋在地層下,經過地殼隔絕空氣的壓力和溫度條件下作用,產生的碳化化石礦物,由碳、氫、氧、氮等元素組成的黑色固體礦物,主要被人類開採用作燃料。煤炭被人們譽為黑色的金子,工業的食糧,它是十八世紀以來人類世界使用的主要能源之一。煤被廣泛用作工業生產的燃料,是從18世紀末的產業革命開始的,隨著蒸汽機的發明和使用,煤被廣泛地用作工業生產的燃料,給社會帶來了前所未有的巨大生產力。

煤炭是千百萬年來植物的枝葉和根莖,在地面上堆積而成的一層極厚的黑色的腐植質,由於地殼的變動不斷地埋入地下,長期與空氣隔絕,並在高溫高壓下,經過一系列復雜的物理化學變化等因素,形成的黑色可燃沉積岩,這就是煤炭的形成過程。

一座煤礦的煤層厚薄與這地區的地殼下降速度及植物遺骸堆積的多少有關。地殼下降的速度快,植物遺骸堆積得厚,這座煤礦的煤層就厚,反之,地殼下降的速度緩慢,植物遺骸堆積的薄,這座煤礦的煤層就薄。又由於地殼的構造運動使原來水平的煤層發生褶皺和斷裂,有一些煤層埋到地下更深的地方,有的又被排擠到地表,甚至露出地面,比較容易被人們發現。還有一些煤層相對比較薄,而且面積也不大,所以沒有開采價值,有關煤炭的形成至今尚未找到更新的說法。

煤炭是這樣形成的嗎?有些論述是否應當進一步加以研究和探討。一座大的煤礦,煤層很厚,煤質很優,但總的來說它的面積並不算很大。如果是千百萬年植物的枝葉和根莖自然堆積而成的,它的面積應當是很大的。因為在遠古時期地球上到處都是森林和草原,因此,地下也應當到處有儲存煤炭的痕跡;煤層也不一定很厚,因為植物的枝葉、根莖腐爛變成腐植質,又會被植物吸收,如此反復,最終被埋入地下時也不會那麼集中,土層與煤層的界限也不會劃分得那麼清楚。

但是,無可否認的事實和依據,煤炭千真萬確是植物的殘骸經過一系統的演變形成的,這是顛簸不破的真理,只要仔細觀察一下煤塊,就可以看到有植物的葉和根莖的痕跡;如果把煤切成薄片放到顯微鏡下觀察,就能發現非常清楚的植物組織和構造,而且有時在煤層里還保存著像樹干一類的東西,有的煤層里還包裹著完整的昆蟲化石。

在地表常溫、常壓下,由堆積在停滯水體中的植物遺體經泥炭化作用或腐泥化作用,轉變成泥炭或腐泥;泥炭或腐泥被埋藏後,由於盆地基底下降而沉至地下深部,經成岩作用而轉變成褐煤;當溫度和壓力逐漸增高,再經變質作用轉變成煙煤至無煙煤。泥炭化作用是指高等植物遺體在沼澤中堆積經生物化學變化轉變成泥炭的過程。腐泥化作用是指低等生物遺體在沼澤中經生物化學變化轉變成腐泥的過程。腐泥是一種富含水和瀝青質的淤泥狀物質。冰川過程可能有助於成煤植物遺體匯集和保存。

據國人自創理論《地球熱核演變說》中記載,當碳元素由一些較輕的元素聚變形成後的一定時期里,它與原始大氣里的氫元素反應生成甲烷,隨著溫度下降,氧氣變得越來越活潑,它氧化、聚合了甲烷形成了石油分子,由於長時間的氧化、聚合,石油分子越來越大,形成了大量的近似瀝青的物質,當早期地球頻繁的火山熔岩噴發在瀝青上時,由於熔岩密度大,沉入石油底部對其隔絕空氣加強熱,導致碳氫鍵斷裂,釋放氫氣,形成煤炭。(一部分石油分子不是甲烷經氧化、聚合而形成的,它們是在地球溫度較高時,由碳、氫直接形成不飽和烴聚合而成的)。

石油的形成原因

研究表明,石油的生成至少需要200萬年的時間,在現今已發現的油藏中,時間最老的達5億年之久。但一些石油是在侏羅紀生成。在地球不斷演化的漫長歷史過程中,有一些“特殊”時期,如古生代和中生代,大量的植物和動物死亡後,構成其身體的有機物質不斷分解,與泥沙或碳酸質沉澱物等物質混合組成沉積層。由於沉積物不斷地堆積加厚,導致溫度和壓力上升,隨著這種過程的不斷進行,沉積層變為沉積岩,進而形成沉積盆地,這就為石油的生成提供了基本的地質環境。大多數地質學家認為石油像煤和天然氣一樣,是古代有機物通過漫長的壓縮和加熱後逐漸形成的。按照這個理論石油是由史前的海洋動物和藻類屍體變化形成的。(陸上的植物則一般形成煤。)經過漫長的地質年代這些有機物與淤泥混合,被埋在厚厚的沉積岩下。在地下的高溫和高壓下它們逐漸轉化,首先形成臘狀的油頁岩,後來退化成液態和氣態的碳氫化合物。由於這些碳氫化合物比附近的岩石輕,它們向上滲透到附近的岩層中,直到滲透到上面緊密無法滲透的、本身則多空的岩層中。這樣聚集到一起的石油形成油田。通過鑽井和泵取人們可以從油田中獲得石油。地質學家將石油形成的溫度范圍稱為“油窗”。溫度太低石油無法形成,溫度太高則會形成天然氣。

非生物成油的理論天文學家托馬斯·戈爾德在俄羅斯石油地質學家尼古萊·庫德里亞夫切夫(Nikolai Kudryavtsev)的理論基礎上發展的。這個理論認為在地殼內已經有許多碳,有些碳自然地以碳氫化合物的形式存在。碳氫化合物比岩石空隙中的水輕,因此沿岩石縫隙向上滲透。石油中的生物標志物是由居住在岩石中的、喜熱的微生物導致的。與石油本身無關。在地質學家中這個理論只有少數人支持。一般它被用來解釋一些油田中無法解釋的石油流入,不過這種現象很少發生。

天然氣的形成原因

天然氣的成因是多種多樣的,天然氣的形成則貫穿於成岩、深成、後成直至變質作用的始終,各種類型的有機質都可形成天然氣,腐泥型有機質則既生油又生氣,腐植形有機質主要生成氣態烴。

生物成因

成岩作用(階段)早期,在淺層生物化學作用帶內,沉積有機質經微生物的群體發酵和合成作用形成的天然氣稱為生物成因氣。其中有時混有早期低溫降解形成的氣體。生物成因氣出現在埋藏淺、時代新和演化程度低的岩層中,以含甲烷氣為主。生物成因氣形成的前提條件是更加豐富的有機質和強還原環境。

最有利於生氣的有機母質是草本腐植型—腐泥腐植型,這些有機質多分布於陸源物質供應豐富的三角洲和沼澤湖濱帶,通常含陸源有機質的砂泥岩系列最有利。硫酸岩層中難以形成大量生物成因氣的原因,是因為硫酸對產甲烷菌有明顯的抵製作用,H2優先還原SO42-→S2-形成金屬硫化物或H2S等,因此CO2不能被H2還原為CH4。

甲烷菌的生長需要合適的地化環境,首先是足夠強的還原條件,一般Eh<-300mV為宜(即地層水中的氧和SO42-依次全部被還原以後,才會大量繁殖);其次對pH值要求以靠近中性為宜,一般6.0~8.0,最佳值7.2~7.6;再者,甲烷菌生長溫度O~75℃,最佳值37~42℃。沒有這些外部條件,甲烷菌就不能大量繁殖,也就不能形成大量甲烷氣。

❸ 怎麼從重油里變出汽油來

目前,在石油產品中,作為汽車燃料的汽油和柴油的數量要佔到一多半,而一般原油中含有的汽油、柴油這樣的輕質餾分只有1/4左右,光是從數量上看就有很大差距,同時在質量上也達不到要求。

因而,人們便想方設法要把約占原油3/4的較重成分變成輕質燃料,以滿足交通事業發展的需要。根據原油在350℃起就開始分解這個特點,20世紀初就有人開發了石油熱裂化生產汽油的方法,並大規模工業化,基本滿足了當時的需要。但是到了20世紀40年代,汽車數量激增,汽油機的工作條件越來越苛刻,熱裂化汽油無論在數量上還是質量上都已經不能滿足需要,此時一種稱為催化裂化的新生產工藝便應運而生。自那時起,催化裂化迅速發展,逐漸成為生產汽油的主角,而熱裂化則逐漸退出歷史舞台,現在已幾乎絕跡。

所謂催化裂化就是指在催化劑存在下進行裂化反應,與單純的熱裂化相比,它可以在較低的溫度下、較短的時間內完成反應,大大提高了生產的效率和汽油的質量。其反應溫度大體在500℃左右,反應時間只有幾秒鍾。催化裂化的原料比較廣泛,最初主要用沸點范圍為350~500℃的中間餾分為原料,現在大量採用重質原料(全部或部分摻入常壓渣油或減壓渣油),就是所謂重油催化裂化。催化裂化所用的催化劑現有許多品牌,但在本質上它們都是硅和鋁的化合物,現在普遍採用的是一類稱為Y型分子篩的固體酸催化材料,以分子篩為主要成分的裂化催化劑具有很高的催化活性、選擇性及穩定性。

催化裂化裝置催化裂化汽油的產率大體在50%左右,它在我國車用汽油中的份額約佔80%之多。催化裂化汽油基本可達到90號車用汽油的標准,但是從環保上更高的要求來看,其中烯烴的含量較高,硫含量一般也偏高,這是目前正在設法解決的問題。此外,催化裂化還產出25%~30%的柴油餾分,其質量較差,需要經過進一步處理後才能應用。

催化裂化在生成汽油、柴油等液體產物的同時,還生成以丙烷、丙烯、丁烷、丁烯為主要成分的氣體產物。它們在不太高的壓力下就可以變成液體,這就是常用作民用燃料的液化氣。其實,把液化氣當燃料燒掉是很可惜的。因為它們是極好的石油化工原料,可以用來製取聚丙烯和聚丙烯腈等許多十分重要的產品。近年來,還開發了一系列用催化裂化方法盡量多產氣體烯烴的過程,成為除了高溫裂解外另一條提供石油化工原料的重要渠道。

此外,還有一類也能把大分子變小,使重質的原料變輕的過程稱為加氫裂化。這種方法是在高達100多個大氣壓(約10兆帕)的氫氣下,經過加氫裂化催化劑的作用,可以生產出質地純凈的優質噴氣飛機燃料、柴油以及石油化工的原料(輕油)。

❹ 石油是怎樣變成汽油的

石油變成汽油的方法如下:
常用催化裂化法,是指在催化劑存在下進行裂化反應,可以在較低溫度下、較短時間內完成反應,大大提高了生產的效率和汽油的質量。其反應溫度大體在500攝氏度,反應時間只有幾秒鍾。催化裂化的原料比較廣泛,最初主要用沸點范圍為350攝氏度至500攝氏度的中間餾分為原料,現在大量採用重質原料(全部或部分摻入常壓渣油或減壓渣油),就是所謂重油催化裂化。催化裂化使用的催化劑現有很多品牌,但本質上它們都是硅和鋁的化合物,現在普遍採用的是一類稱為Y型分子篩的固體酸催化材料。以分子篩為主要成分的裂化催化劑具有很高的催化活性、選擇性及穩定性。
另,催化裂化在生成汽油、柴油等液體產物的同時,還生成以丙烷、丙烯、丁烷、丁烯為主要成分的氣體產物。它們在不太高的壓力下就可以變成液體。這就是常用作民用燃料的液化氣。
此外,還有一類也能把大分子變小、使重質的原料變輕的過程,稱為加氫裂化。這種方法是在100多個大氣壓(10兆帕)的氫氣下,經過加氫裂化催化劑作用,可生產出質地純凈的優質噴氣飛機燃料、柴油,以及石油化工原料(輕油)。

❺ 石油液化氣液化的原理

石油氣在常溫常壓下是氣體,在一定的壓力下或冷凍到一定溫度都可以液化為液體,稱為液化石油氣。

液化石油氣與石油和天然氣一樣,是化石燃料。液化氣是在石油煉制過程中由多種低沸點氣體組成的混合物,沒有固定的組成。主要成分是丁烯、丙烯、丁烷和丙烷。盡管大多數能源企業都不專門生產液化石油氣,但由於它是其他燃料提煉過程中的副產品,所以含有一定產量。

(5)怎麼把石油變成氣擴展閱讀:

一、化學性質

是由碳氫化合物所組成,主要成分為丙烷、丁烷以及其他烷系或烯類等。丙烷加丁烷百分比的綜合超過60%,低於這個比例就不能稱為液化石油氣。每個國家都有自己的標准,外國的石油公司對液化石油氣比較講究,他們是隨季節的變化而調整丙烷和丁烷的配比。

國產液化石油氣主要供給家庭使用,還沒有考慮到工業需要高質量的要求,所以生產出來的液化石油氣丙烷、丁烷含量低且雜質多。

二、危險特性

(1)液化石油氣的易爆特性

液化石油氣第一個特點也是最大的特點就是液化石油氣的易爆性。一般當發生液化石油氣安全事故的時候都會出現爆炸的情況,而且在燃燒之前爆炸。

主要的原因是因為液化石油氣的熱值比較高,單單從熱值來進行比較液化石油氣要比普通的煤氣的熱值要高出好幾倍,所以當液化石油氣出現安全事故時就會出現爆炸的情況。在爆炸之後就會出現燃燒現象,液化石油氣的燃燒也與爆炸的威力相似,破壞性大。

(2)液化石油氣的易燃特性

液化石油氣具有石油的主要成分,這些成分包括丙烷、丁烷、丙烯、丁烯等,成分都是典型的烴類化合物,也具備烴類化合物最大的特點就是易燃性。而且液化石油氣成分中包含的這些烴類化合物的閃點和自燃點都是非常低的,很容易引起燃燒。

(3)液化石油氣的毒性

液化石油氣是一種有毒性的氣體,但是這種毒性的揮發是有一定條件的。只有當液化石油氣在空氣中的濃度超過了10%時才會揮發出讓人體出現反應的毒性。當人體接觸到這樣的毒性之後就會出現嘔吐、惡心甚至昏迷的情況,給人體帶來極大的傷害。

❻ 石油和天然氣怎麼生成的

隨著科學的發展,大量的證據表明,石油和天然氣是由分散在沉積岩中的沉積有機質在成岩作用期間經微生物分解或熱解作用而形成。
一、油氣生成的原始物質
石油和天然氣來源於有機質。早在古生代以前,地球上就出現了生物,隨著地史的發展,生物廣泛地發育起來。地球上的動植物種類繁多,數量很大,化學成分也異常復雜,但就生成油氣的主要原始物質而言,仍然是以沉積岩中分散的有機質為主。那麼有機物質的哪些組分可以生成油氣呢?
(1)類脂化合物。常見的類脂化合物是脂肪,脂肪水解後生成脂肪酸,在還原條件下,脂肪酸發生去羧基和加氫作用,生成類似石油的液態烴類,是生油最主要的物質。類脂化合物主要來自於低等的生物和微生物體,如低等的藻類、細菌、低等水生物。
(2)蛋白質。蛋白質是生物體的基本組成物質之一,其性質不穩定,與酸、鹼共熱或遇酶水解可生成氨基酸的混合物。氨基酸去羧基和氨基可生成不同的低分子碳氫化合物。蛋白質主要來自於低等的生物(細菌、藻類等)。
(3)碳水化合物。碳水化合物即糖類,是高等植物的主要組分,易被水解、氧化及生物化學分解。碳水化合物在鹼性條件下,發生糖化作用生成脂肪酸,再向烴類轉化。碳水化合物較穩定的部分,如幾丁質、纖維素等,可以被降解形成腐殖類物質向煤轉化,同時,纖維素經微生物分解也可生成天然氣。
(4)木質素。木質素來自於高等植物,它是由對甲基烯丙基苯為基本結構單元的高分子化合物,是形成腐殖質的原始物質,故人們認為它可能是石油中芳香烴的母質之一,也是成煤生氣的主要物質。
可見,低等生物(如藻類和低等水生動物)和微生物是生成油氣的主要物質。
二、油氣生成的外界條件
有機質為石油和天然氣的生成提供了物質基礎,但要使有機質保存下來,並向油氣轉化,必須有適當的外界條件。
(一)古地理環境和大地構造條件
根據對現代沉積相和古代沉積岩的調查研究,淺海區、海灣、潟湖以及內陸湖泊的深湖—半深湖、前三角洲地區,是有利的生油氣地理環境。這些地方適宜於生物生活和繁殖,有豐富的有機質,且水體寧靜,含氧量少,具有生成油氣的還原環境;沉積物來源充足,沉積速度快,有機物能迅速被掩埋起來,利於有機質的保存。
從大地構造角度來說,沉積盆地中各類坳陷具有長時期的沉降作用,且沉降的幅度不斷被沉積物所補償,始終保持有利於生物繁殖的水深環境,保證沉積有機物不斷被新的沉積物所覆蓋,保持還原環境,減少有機物被氧化消耗。隨著有機物埋深加大,地層溫度升高,有利於沉積有機質向油氣轉化。我國松遼盆地中、新生代沉積層厚約5500m,華北、四川、准噶爾盆地沉積岩厚達上萬米,這些盆地都找到了豐富的油氣藏。
(二)物理化學條件
有機質向油氣轉化的物理化學條件主要有細菌、溫度、壓力、催化劑。
細菌是地球上分布最廣、繁殖最快的微生物。細菌能引起多種生物化學作用,尤其是厭氧細菌可以把沉積有機質分解成各種單體化合物和瀝青質。在成岩作用初期階段,細菌分解作用是主導作用。
溫度可以加速化學反應進行。沉積有機質在埋藏深度不斷加大,地層溫度不斷上升的情況下,有機質發生熱解形成烴類。高溫下,有機質變質作用增強,裂解成氣態物質(甲烷)和石墨。在油氣形成過程中,溫度起主導作用。隨著沉積有機質埋藏深度加大,壓力升高,在中等溫度(50℃)下,增加壓力到30~70MPa時,類脂化合物室內模擬試驗時產生烴。
壓力可以促進加氫作用,使高分子烴變成低分子烴,使不飽和烴變為飽和烴,對形成石油的質量有影響。
催化劑是指能夠加速有機質向油氣轉化的物質,但它本身在反應前後並不發生變化。室內研究表明,在150~200℃時硅酸鋁能催化脂肪、氨基酸以及其他類脂化合物生成烴類化合物,膨潤土也有催化作用。
三、油氣生成階段
有機質向油氣轉化,依據其作用因素和產物的不同,大致可以劃分為三個階段。
(一)生物化學生氣階段
有機質自沉積埋藏開始至1500m深度范圍,壓力增大,溫度小於60℃,以細菌活動為主。有機質在細菌作用下發生分解,產生大量氣態物質,如CH4、CO2、N2等。同時,階段後期有極少量的碳數較高的液態烴形成。因此,此階段只能形成氣藏,而不能形成像樣的油藏。
(二)熱催化生油階段
隨著有機質埋深加大,地層溫度、壓力不斷升高,細菌作用逐漸減弱,地熱及無機催化作用起著主導作用。此階段深度大約在1500~6000m,溫度在60~210℃之間。其中在60~120℃、深度在1500~3000m范圍內,有機質發生催化降解、加氫作用,大量的液態烴和氣態烴形成,稱之為「生油主帶」。我們把有機質開始熱解成為大量石油烴和氣態烴的溫度(約60℃)稱為「生油門限溫度」。在埋深3000~6000m、溫度120~210℃階段,溫度的作用更為顯著,有機質熱解產生少量的氣態物,先形成的液態烴部分裂解,形成濕氣或凝析氣。
(三)熱裂解生氣階段
當埋深超過6000m、溫度超過210℃時,有機質和已生成的石油發生降解,早期尚有少量的液態烴,但最終它們均裂解成為氣態烴(CH4)和石墨,稱之為「干氣階段」。
四、生油(氣)層
能夠生成工業數量的石油和天然氣的岩石,稱為生油(氣)岩,也稱為生油(氣)母岩。由生油(氣)岩組成的岩層稱為生油(氣)層,它是自然界生成石油和天然氣的場所。
生油(氣)層是由顆粒較細的沉積岩層組成。常有兩類岩石:一是黏土岩,包括泥岩和頁岩;二是碳酸鹽岩,如泥晶灰岩、介殼灰岩、白雲岩、礁灰岩等。生油(氣)層的共同特徵是:顏色較深,多為灰褐、黑色;顆粒較細;含有較多的分散狀有機質(如微體古生物化石)和黃鐵礦。
生油(氣)層常形成於水體較為安靜、有機質豐富的深湖相、半深湖相、前三角洲相、淺海相、潟湖相等相帶。
生油岩的鑒別,目前已由定性的判斷向定量的方法分析轉變。定量確定生油岩是分析岩石中的各種地球化學指標,包括有機質豐度指標、有機質類型指標、有機質成熟度指標和有機質轉化指標四類。

❼ 怎麼樣把石油轉化為天然氣

目前,擁有煤制油、煤制氣技術,雖然沒有聽說,但是相信油制氣這個技術肯定是有的。
但是沒人會去這么做。
經濟上:一噸油4200元人民幣,等熱值得天然氣大概1250立方米,而每立方米天然氣全國不同,大概在1-3元不等,價值才1250-3750元,所以,油制氣是虧本的。
能量上:任何通過技術的轉換,一定會帶來熱值的損耗,所以也是不劃算的。
對外依存度上:石油消費有58%靠進口,天然氣消費33%靠進口,也就是石油更緊缺,所以沒人會去把石油變天然氣。
中國是因為煤多,價格便宜,所以發展了煤制油和煤制氣。

❽ 石油和天然氣是怎麼形成的

海底的石油和天然氣是海洋中的有機物質在合適的環境下演變所產生的。這些有機物質包括陸生和水生的低等植物,死亡後從陸地搬運下來,或被江河沖積下來,同泥砂和其他礦物質一起,在低窪的淺海或陸地上的湖泊中沉積,逐漸使此處淤泥的中形成有機質含量。這種有機淤泥又被新的沉積物覆蓋、埋藏起來,造成一種不含氧或含極微量游離氧的還原環境。隨著低窪地區的不斷下沉、沉積物不斷堆積,有機淤泥所承受的壓力和溫度不斷增大,處在還原環境中的有機物質經過復雜的物理、化學變化,慢慢地轉化成對人類影響甚大的石油和天然氣。經過數百萬年漫長時間的萬物更迭的交替變化,有機淤泥經過壓實和固結作用後,變成沉積岩,並進一步生油岩層。沉積盆地是指沉積物的堆積速率明顯大於其周圍區域,。
在一定特定時期,沉積岩沉積在像盆一樣的海洋或湖泊等低窪地區,並具有較厚沉積物的構造單元,稱為沉積盆地。沉積盆地在漫長的地質演變過程中,隨著地殼運動抬升,海洋變成陸地,湖盆變成高山,一層層水平狀的沉積岩層也跟著發生規模不等的撓曲、褶皺和斷裂等形變,從而使摻雜在泥砂之中具有流動性的點滴油氣離開它們的原生地帶(生油層),經「油氣搬家」再集中起來,儲集到儲油構造當中,形成可供開採的油氣礦藏,所以說,這一個個沉積盆地就像是一個個聚寶盆。
在儲油構造里,由於油、氣、水所佔比重不同,因此各自的分布也有不同:氣在上部,水在下部,而石油層在中間。儲油構造包括油氣居住的岩層——儲集層;覆蓋在儲集層之上避免油氣向上逸散的保護層——蓋層;以及遮擋油氣進入後不再跑掉的「牆」——封閉條件。只要能找到儲油構造,就不難找到油氣藏。油氣藏通常是多種類型的油氣藏復合出現,我們將多個油氣藏的組合稱為油氣田。
世界上,海洋油氣同陸地油氣資源一樣,分布極為不均。在四大洋及多個近海海域中,波斯灣海域的石油、天然氣含量最為豐富,約占總貯量的50%左右;第二位是委內瑞拉的馬拉開波湖海域;第三位是北海海域;第四位是墨西哥灣海域;其次是亞太、西非等海域。據中國南海油氣資源也有巨大的發展遠景,是世界海洋油氣主要聚集中心之一。石油和天然氣是人們向海洋索取資源的一大重要成果。

❾ 石油和天然氣是如何形成的

1、石油的形成:

石油的原料是生物的屍體,生物的細胞含有脂肪和油脂,脂肪和油脂則是由碳、氫、氧等3種元素組成的。生物遺體沉降於海底或湖底並被淤泥覆蓋之後,氧元素分離,碳和氫則組成碳氫化合物。 大量產生碳氫化合物的岩石即稱為「石油源岩」。埋沒於地中的石油源岩受到地熱和壓力的影響,再加上其他多種化學反應之後就產生石油,而石油積存於岩石間隙之間便形成油田。

2、天然氣的形成:

天然氣的形成與生物有關。在地質歷史中,海洋里生存著大量的生物,它們在生長過程中具有分泌鈣質骨骼的能力,在水深、溫度、光照和海水含鹽度適宜的條件下,這些生物一代又一代地繁殖,便形成了堅固的生物礁。它們死亡後,被沉積物覆蓋並埋藏在地層深部,在長期的地質作用下,逐漸成為天然氣形成的物質基礎。