1. 水質石油類會揮發掉嗎
石油類物質進入水體後發生一系列復雜的遷移轉化過程,主要包括擴展、揮發、溶解、乳化、光化學氧化、微生物降解、生物吸收和沉積等。擴展過程:油在海洋中的擴展形態由其排放途徑決定。船舶正常行駛時需要排放廢油,這屬於流動點源的連續擴展;油從污染源(擱淺、觸礁的船或陸地污染源)緩慢流出,這屬於點源連續擴展;船舶或貯油容器損壞時,油立刻全部流出來,這屬於點源瞬時擴展。擴展過程包括重力慣性擴展、重力粘滯擴展、表面張力擴展和停止擴展四個階段。重力慣性擴展在1小時內就可完成;重力粘滯擴展大約需要10小時;而表面張力擴展要持續100小時。擴展作用與油類的性質有關,同時受到水文和氣象等因素的影響。擴展作用的結果,一方面擴大了污染范圍,另一方面使油-氣、油-水接觸面積增大,使更多的油通過揮發、溶解、乳化作用進入大氣或水體中,從而加強了油類的降解過程。揮發過程:揮發的速度取決於石油中各種烴的組分、起始濃度、面積大小和厚度以及氣象狀況等。揮發模擬試驗結果表明:石油中低於C15的所有烴類(例如石油醚、汽油、煤油等),在水體表面很快全部揮發掉;C15—C25的烴類(例如柴油、潤滑油、凡士林等),在水中揮發較少;大於C25的烴類,在水中極少揮發。揮發作用是水體中油類污染物質自然消失的途徑之一,它可去除海洋表面約50%的烴類。溶解過程:與揮發過程相似,溶解過程決定於烴類中碳的數目多少。石油在水中的溶解度實驗表明,在蒸餾水中的一般規律是:烴類中每增加2個碳、溶解度下降10倍。在海水中也服從此規律,但其溶解度比在蒸餾水中低12%—30%。溶解過程雖然可以減少水體表面的油膜,但卻加重了水體的污染。乳化過程:指油-水通過機械振動(海流、潮汐、風浪等),形成微粒互相分散在對方介質中,共同組成一個相對穩定的分散體系。乳化過程包括水包油和油包水兩種乳化作用。顧名思義,水包油乳化是把油膜沖擊成很小的涓滴分布水中。而油包水乳化是含瀝青較多的原油將水吸收形成一種褐色的粘滯的半固體物質。乳化過程可以進一步促進生物對油類的降解作用。光化學氧化過程:主要指石油中的烴類在陽光(特別是紫外光)照射下,迅速發生光化學反應,先離解生成自由基,接著轉變為過氧化物,然後再轉變為醇等物質。該過程有利於消除油膜,減少海洋水面油污染。微生物降解過程:與需氧有機物相比,石油的生物降解較困難,但比化學氧化作用快10倍。微生物降解石油的主要過程有:烷烴的降解,最終產物為二氧化碳和水;烯烴的降解,最終產物為脂肪酸;芳烴的降解,最終產物為琥珀酸或丙酮酸和CH3CHO;環已烷的降解,最終產物為己二酸。石油物質的降解速度受油的種類、微生物群落、環境條件的控制。同時,水體中的溶解氧含量對其降解也有很大影響。生物吸收過程:浮游生物和藻類可直接從海水中吸收溶解的石油烴類,而海洋動物則通過吞食、呼吸、飲水等途徑將石油顆粒帶入體內或被直接吸附於動物體表。生物吸收石油的數量與水中石油的濃度有關,而進入體內各組織的濃度還與脂肪含量密切相關。石油烴在動物體內的停留時間取決於石油烴的性質。沉積過程:沉積過程包括兩個方面,一是石油烴中較輕的組分被揮發、溶解,較重的組分便被進一步氧化成緻密顆粒而沉降到水底。二是以分散狀態存在於水體中的石油,也可能被無機懸浮物吸附而沉積。這種吸附作用與物質的粒徑有關,同時也受鹽度和溫度的影響,即隨鹽度增加而增加,隨溫度升高而降低。沉積過程可以減輕水中的石油污染,沉入水底的油類物質,可能被進一步降解,但也可能在水流和波浪作用下重新懸浮於水面,造成二次污染。
2. 石油在水中會不會沉澱
原油加水也會分層,下層為水。不過原油雜質很多,交界面可能會有絮狀沉澱懸浮
3. 石油漂浮在水面上由於支持力還是浮力
這兩個力有區別嗎?在力學中沒有支持力這種說法,應該是浮力,因為石油粘性較大又不溶於水,所以當進入水中後它會分散開來,從而形成巨大的浮力,漂浮在水面、
4. 石油泄漏到大海後為什麼都是漂浮在水面,而不會沉入水底呢
因為油比海水輕啊
5. 油為什麼會浮在水面
問題一:油為什麼浮在水面上? 油會浮在水面上的原因有二:
(一)油的密度比水小;
(二)油水兩種液體不相溶。
所以,油會浮在水面上。
希望幫助到你,若有疑問,可以追問
祝你學習進步,更上一層樓!
問題二:油為什麼會浮在水面上? 首先,油和水互不相溶,是互斥的兩相。燃並這才構成有上下兩層。
其次,油的比重比水小,油層就浮在水上了。
若要問:為什麼比重小的會浮在上面,回答:是地心引力的作用所致。
問題三:石油為什麼會浮在水面上 一,石油不容於水
二,石油密度比水密度小
問題四:為什麼油會浮在水上 1,油是有機皮檔跡物,水是無機物,一般來說,有相似相溶的原則(物質一般比較容易溶解在結構相似的物質中),油在水中的溶解度分為:不溶,(你可以查初中化學書的溶解表),而油的密度比水小,所以油會浮在水上,而不混合,但是假設如果密度一樣,就算不相溶也可以混合在一起的。這里需要搞區分溶解和混合的概念。。。
酒精是「極易」溶於水的,雖然密度比水小,但是已經充分的溶解在水中,(酒精分子已經分散在水分子空隙中)
2剛說了
油在水中的溶解度分為:不溶,但是化學中的不溶是指溶解度小於一個指標,但是實際並不可能出現100%完全不溶解,所以上面的油還是稍微含水,但是比率非常小了。
呵呵,懷念中學的化學課啊。。。。
問題五:油為什麼會浮在水面上 油會浮在水面上的原因有二:
(一)油的密度比水小;
(二)油水兩種液體不相溶。
所以,油會浮在水面上。
問題六:為什麼油會浮在水面上? 水是極性分子,油是非極性分子,根據相似相溶原理他們互不相溶。又由於油的密度比水小,所以油浮在水上面.
問題七:為什麼油浮在水面上? 1、因為油不溶於水
2、油的密度比水小
問題八:為什麼油浮在水面上看起來會有七彩的顏色呢蠢喚? 這是因為油漂浮在水面,由於水面的張力使油產生厚度的不統一,一般中間厚,在陽光的照射油麵和水面接觸處油麵產生折射水面再把折射的光線反射回去.折射可以對白光分解成七種色光,著樣你就能看到是彩色的.
6. 石油的物理性質
石油的化學成分將決定它的物理性質和經濟價值,而石油沒有固定的成分,因此也就沒有固定的物理常數。但通過對分布廣泛的石油大量相關資料的分析整理,還是能歸納出反映石油總特徵的物理性質或相關物理性質的變化范圍。了解這些性質對認識石油、進行石油地質研究和評價石油品質及經濟價值是很有用的。
( 一) 顏色
在透射光下石油顏色可以呈淡黃、褐黃、深褐、淡紅、棕、黑綠及黑等顏色。原油顏色的深淺主要取決於膠質、瀝青質的含量,其含量愈高,則顏色愈深。
( 二) 密度
石油與天然氣地質學
石油密度一般介於 0. 75 ~ 0. 98 之間。通常把密度大於 0. 90 的稱為重質石油,小於0. 90 的稱為輕質石油。世界各國的原油大多為輕質石油,重質石油居次要地位。石油密度最大的可達 1. 00 以上,這種石油用一般方法難於開采。
石油的密度主要取決於化學組成。就烴類而言,密度隨碳數增加而增大。碳數相同的烴類,烷烴密度小些,環烷烴居中,芳烴密度較大。
密度是單位體積物質的質量,一般用 g/ml 或 g/cm3表示。密度與物質本身的成分和體積變化相關。液體石油的體積,在常壓下隨溫度升高而增大。溫度每增加1 ℉,單位體積所增加的體積數稱為膨脹系數。它不是一個固定的常數,而是隨密度減小而增大 ( 表 1 - 4) 。壓力對石油的體積也有影響,隨壓力增大體積將因被壓縮而減小。壓力每增加 101325Pa,單位體積被壓縮的體積數稱為壓縮系數。壓縮系數也不是一個常數。
顯然,溫度和壓力是影響石油體積的兩個主要因素。考慮原油是氣、液、固三相物質的混合物,以液態烴為主體的石油中含有不同數量的溶解氣態烴、固態烴及非烴。實際上,在地下油氣藏中,溫度和壓力不僅影響石油的體積,同時還影響到石油本身的物質組成,從而影響其質量。一方面,溫度的增加有使溶解氣逸出液態石油的趨勢; 另一方面,壓力的增加,將使原油中溶解氣量增加。在地下油氣藏中,溫度、壓力同時增加,而壓力增加使溶解氣增加的效應遠大於溫度增加使溶解氣逸出的效應; 與此同時,溶解氣量增加引起體積增加的效應遠遠超過隨壓力增加而使體積減小的效應。因此出現壓力增加體積不是縮小而是增大,直至達到飽和壓力為止 ( 圖 1 -5) 。
表 1 -4 不同密度石油的膨脹系數
圖 1 -5 在有氣頂氣條件下石油體積隨壓力增大而變化的情況( 轉引自 A. I. Levorsen,1954)
由此可見,地下石油的密度不僅與溫度、壓力有關,還與溶解氣量有關,且後者才是影響石油密度的本質因素。溶解氣量增加則密度降低。地表與地下溫度、壓力條件不同,不僅影響石油體積,更主要的是由於溶解氣量的差異,導致石油物質組成的差異,實質上是改變了石油的質量。地下石油含有較多的溶解氣,這是地下石油密度比地表石油密度低的根本原因。
( 三) 黏度
黏度是反映流體流動難易程度的一個物理參數。黏度值實質上是反映流體流動時分子之間相對運動所引起內摩擦力的大小。黏度大則流動性差,反之則流動性好。石油黏度是制定石油開發方案、油井動態分析及石油儲運都必須考慮的重要參數。黏度分為動力黏度、運動黏度和相對黏度。
動力黏度又稱絕對黏度。在國際計量單位SI制中,單位為帕斯卡·秒(Pa·s)。其定義為:流體通過長度(L)為1m,橫截面積(F)為1m2,滲透率(K)為1μm2的介質,當壓差(ΔP)為1Pa,流量(Q)為1m3/s時,流體的黏度(η)為1Pa·s。其表達式為:
石油與天然氣地質學
1Pa·s相當於C.G.S制10P,1mPa·s=10-3Pa·s。在101325Pa,20℃時,水的動力黏度為1mP·s。不同溫度下的動力黏度用ηt表示。
動力黏度/密度,稱為運動黏度。其單位為m2/s,稱二次方米每秒。不同溫度下的運動黏度用νt表示。
相對黏度又稱恩氏黏度,是在恩氏黏度計中200mL原油與20℃時同體積的蒸餾水流出時間之比。常用Et表示。根據實驗室測定的Et值,可以通過查換算表獲得運動黏度,並計算出動力黏度。
石油地質學上通常所用的黏度多指動力黏度。石油黏度大小主要取決於其化學組成,如果小分子的烷烴、環烷烴含量高,黏度就低;而如果石蠟、膠質、瀝青質含量高,黏度就高。
石油黏度隨溫度升高、溶解氣量增加而降低。因此,地下石油的黏度常低於地表。在地下1500~1700m處,石油的黏度通常僅為地表的一半。如我國克拉瑪依的原油,在地下溫度為50℃時,η50=19.2mPa·s,在地表20℃時,η20=64.11mPa·s。
(四)溶解性
石油能溶於多種有機溶劑。如氯仿、四氯化碳、苯、醚等。石油是多種有機化合物的混合物,實際上各種化合物都可以看做有機溶劑,換言之,各成分之間具有互溶性。其中輕質組分對重質組分的溶解作用可能更明顯些,也更容易理解。有可能這種溶解作用正是重質組分得以實現運移的有效途徑。
石油在水中的溶解度一般很低,通常隨分子量的增加很快變小,但隨不同烴類化學性質的差異而有很大的差別。其中芳烴的溶解度最大,可達數百到上千微克/克;環烷烴次之,一般為(14~150)微克/克;烷烴最低,僅幾個到幾十微克/克。在碳數相同時,一般芳烴的溶解度大於鏈烷。如己烷、環己烷和苯分別為9.5mg/L、60mg/L和1750mg/L,差別是非常明顯的。苯和甲苯是溶解度最大的液態烴。
當壓力不變時,烴在水中的溶解度隨溫度升高而變大,芳烴更明顯,但其隨含鹽度和壓力的增大而變小(McAuliffe,1979)。當水中飽和CO2和烴氣時,石油的溶解度將明顯增加。
(五)凝固和液化
石油的凝固和液化溫度沒有固定的數值。在凝固和液化之間可以出現中間狀態。富含瀝青的石油在溫度降低時無明顯凝固現象。石油的凝固點與黏度和重質石蠟的含量有關,尤其與後者關系密切。富石蠟的石油在溫度下降到結蠟點時,即伴隨石蠟晶出而出現凝固現象;高黏度原油一般富含石蠟,10℃左右便會變成黏糊狀或固體狀;石油凝固點的高低與含蠟量及烷烴碳原子數具有正相關性。凝固點高的原油容易使井底及油管結蠟,這給採油增加困難。輕質石油凝固點很低,所以一般低凝固點的石油為優質石油。
(六)蒸發與揮發
蒸發和揮發都是指在常溫常壓下液體表面汽化的現象。二者可視為同義詞。蒸發側重於氣化現象本身,而揮發則是側重於表述這種現象的動態過程和結果。石油蒸發時輕組分優先逸出;而通常石油的揮發性即指其輕組分以氣體形式離開石油散發掉的現象和事實;其結果使石油的密度增大。
(七)熒光性
石油在紫外光照射下可產生熒光的特性稱為熒光性。石油中只有不飽和烴及其衍生物具有熒光性。這是因為它們能吸收紫外光中波長較短、能量較高的光子,隨後放出波長較長、能量較低的光子,產生熒光。飽和烴不發熒光。熒光性可能與存在雙鍵有關。
熒光色隨不飽和烴及含雙鍵的非烴濃度和分子量增加而加深。芳烴呈天藍色,膠質為黃色,瀝青質為褐色。利用石油具有熒光性,可以用紫外燈鑒定岩石中微量石油和瀝青類物質的存在。在有機溶劑中只要含有10-5瀝青類物質即可被發現。
(八)旋光性
大多數石油都具有旋光性,即石油能使偏振光的振動面旋轉一定角度的性能。石油的旋光角一般是幾分之一度到幾度之間。絕大多數石油的旋光角是使偏振面向右旋移而成,僅有少數為左旋。石油的旋光性主要是與組成石油的化合物結構上存在不對稱碳原子(又稱手征碳原子或手征中心)有關。而通常存在手征碳原子的甾、萜類化合物是典型的生物成因標志化合物。因此旋光性可以作為石油有機成因的重要證據之一。
(九)導電性
石油及其產品具有極高的電阻率,石油的電阻率為109~1016Ω·m,與高礦化度的油田水(電阻率為0.02~0.1Ω·m)和沉積岩(1~104Ω·m)相比,可視為無限大。石油及其產品都是非導體。
(十)熱值
石油作為重要的能源,其主要經濟價值就在於它的熱能。石油的熱值因石油的品質差別而有所差異,密度在0.7~0.8kg/L的原油為44.5~47MJ/kg;密度為0.8~0.9kg/L的原油為43~44.5MJ/kg;密度為0.9~0.95kg/L的原油為42~43MJ/kg。與煤比較(煤的熱值為22~32MJ/kg),大約1.5t煤的熱值才相當於1t石油的熱值。
7. 石油與水混合
主要看石油的狀態了,要是石油在凝點以上就是乳狀液,凝點以下就是懸浮顆粒,一般情況下都是乳狀液,油包水是最常見的情況,只有在懸浮輸送的情況下會使石油成為固體顆粒懸浮在水中輸送,減小摩阻。