當前位置:首頁 » 石油礦藏 » 石油烴怎麼加標准溶液
擴展閱讀
qc檢驗用什麼工具 2025-01-04 13:40:41

石油烴怎麼加標准溶液

發布時間: 2025-01-01 19:06:14

Ⅰ 求化學達人解決下面的問題:

乙酸又稱醋酸,廣泛存在於自然界,它是一種有機化合物,是典型的脂肪酸。被公認為食醋內酸味及刺激性氣味的來源。在家庭中,乙酸稀溶液常被用作除垢劑。食品工業方面,在食品添加劑列表E260中,乙酸是規定的一種酸度調節劑。

目錄

簡介
歷史
制備發酵法
甲醇羰基化法
乙醇氧化法
乙醛氧化法
乙烯氧化法
丁烷氧化法
命名
易錯點
物理性質
化學性質酸性
二聚物
溶劑
化學反應
鑒別
生物化學
製取方式
對環境的影響:
其他補充,滿足國際運輸操作人員需要
理化性質
燃燒爆炸危險性
泄漏處理
健康危害性
急救
防護措施
儲運
冰醋酸用途
乙酸反應化學方程式簡介
歷史
制備 發酵法
甲醇羰基化法
乙醇氧化法
乙醛氧化法
乙烯氧化法
丁烷氧化法
命名
易錯點
物理性質
化學性質 酸性
二聚物
溶劑
化學反應
鑒別
生物化學
製取方式對環境的影響:其他補充,滿足國際運輸操作人員需要理化性質燃燒爆炸危險性泄漏處理健康危害性急救防護措施儲運冰醋酸用途乙酸反應化學方程式展開 編輯本段簡介
乙酸(acetic acid)分子中含有兩個碳原子的飽和羧酸,是烴的重要含氧衍生物。分子式C2H4O2,結構 乙酸分子模型
簡式CH3COOH,官能團為羧基。因是醋的主要成分,又稱醋酸。例如在水果或植物油中主要以其化合物酯的形式存在;在動物的組織內、排泄物和血液中以游離酸的形式存在 普通食醋中含有3%~5%的乙酸。乙酸是無色液體 ,有強烈刺激性氣味。熔點16 .6℃,沸點117 .9℃, 相對密度1.0492(20/4℃)密度比水大,折光率1.3716。純乙酸在16.6℃以下時能結成冰狀的固體,所以常稱為冰醋酸。易溶於水、乙醇、乙醚和四氯化碳。當水加到乙酸中,混合後的總體積變小,密度增加,直至分子比為1∶1 ,相當於形成一元酸的原乙酸CH3C(OH)3,進一步稀釋,體積不再變化。 分子量:60.05 分子結構:
冰醋酸
冰醋酸 純的無水乙酸(冰醋酸)是無色的吸濕性液體,凝固點為16.6 °C (62 °F) ,凝固後為無色晶體。盡管根據乙酸在水溶液中的離解能力它是一個弱酸,但是乙酸是具有腐蝕性的,其蒸汽對眼和鼻有刺激性作用。乙酸是一種簡單的羧酸,是一個重要的化學試劑。乙酸也被用來製造電影膠片所需要的醋酸纖維素和木材用膠粘劑中的聚乙酸乙烯酯,以及很多合成纖維和織物。
編輯本段歷史
醋幾乎貫穿了整個人類文明史。乙酸發酵細菌(醋酸桿菌)能在世界的每個角落發現,每個民族在釀酒的時候,不可避免的會發現醋——它是這些酒精飲料暴露於空氣後的自然產物。如中國就有杜康的兒子黑塔因釀酒時間過長得到醋的說法。 乙酸在化學中的運用可以追溯到很古老的年代。在公元前3世紀,希臘哲學家泰奧弗拉斯托斯詳細描述了乙酸是如何與金屬發生反應生成美術上要用的顏料的,包括白鉛(碳酸鉛)、銅綠(銅鹽的混合物包括乙酸銅)。古羅馬的人們將發酸的酒放在鉛制容器中煮沸,能得到一種高甜度的糖漿,叫做「sapa」。「sapa」富含一種有甜味的鉛糖,即乙酸鉛,這導致了羅馬貴族間的鉛中毒。8世紀時,波斯煉金術士賈比爾,用蒸餾法濃縮了醋中的乙酸。 文藝復興時期,人們通過金屬醋酸鹽的干餾制備冰醋酸。16世紀德國煉金術士安德烈亞斯·利巴菲烏斯就描述了這種方法,並且拿由這種方法產生的冰醋酸來和由醋中提取的酸相比較。僅僅是因為水的存在,導致了醋酸的性質發生如此大的改變,以至於在幾個世紀里,化學家們都認為這是兩個截然不同的物質。法國化學家阿迪(Pierre Adet)證明了它們兩個是相同的。 1847年,德國科學家阿道夫·威廉·赫爾曼·科爾貝第一次通過無機原料合成了乙酸。這個反應的歷程首先是二硫化碳經過氯化轉化為四氯化碳,接著是四氯乙烯的高溫分解後水解,並氯化,從而產生三氯乙酸,最後一步通過電解還原產生乙酸。 1910年時,大部分的冰醋酸提取自干餾木材得到的煤焦油。首先是將煤焦油通過氫氧化鈣處理,然後將形成的乙酸鈣用硫酸酸化,得到其中的乙酸。在這個時期,德國生產了約10000噸的冰醋酸,其中30%被用來製造靛青染料。
編輯本段制備
乙酸的制備可以通過人工合成和細菌發酵兩種方法。現在,生物合成法,即利用細菌發酵,僅占整個世界產量的10%,但是仍然是生產醋的最重要的方法,因為很多國家的食品安全法規規定食物中的醋必須是由生物制備的。75%的工業用乙酸是通過甲醇的羰基化制備,具體方法見下。空缺部分由其他方法合成。 整個世界生產的純乙酸每年大概有500萬噸,其中一半是由美國生產的。歐洲現在的產量大約是每年100萬噸,但是在不斷減少。日本每年也要生產70萬噸純乙酸。每年世界消耗量為650萬噸,除了上面的500萬噸,剩下的150萬噸都是回收利用的。
發酵法
有氧發酵 在人類歷史中,以醋的形式存在的乙酸,一直是用醋桿菌屬細菌制備。在氧氣充足的情況下,這些細菌能夠從含有酒精的食物中生產出乙酸。通常使用的是蘋果酒或葡萄酒混合穀物、麥芽、米或馬鈴薯搗碎後發酵。有這些細菌達到的化學方程式為: C2H5OH + O2 → CH3COOH + H2O 做法是將醋菌屬的細菌接種於稀釋後的酒精溶液並保持一定溫度,放置於一個通風的位置,在幾個月內就能夠變為醋。工業生產醋的方法通過提供氧氣使得此過程加快。 現在商業化生產所用方法其中之一被稱為「快速方法」或「德國方法」,因為首次成功是在1823年的德國。此方法中,發酵是在一個塞滿了木屑或木炭的塔中進行。含有酒精的原料從塔的上方滴入,新鮮空氣從他的下方自然進入或強制對流。改進後的空氣供應使得此過程能夠在幾個星期內完成,大大縮短了制醋的時間。 現在的大部分醋是通過液態的細菌培養基制備的,由Otto Hromatka和Heinrich Ebner在1949年首次提出。在此方法中,酒精在持續的攪拌中發酵為乙酸,空氣通過氣泡的形式被充入溶液。通過這個方法,含乙酸15%的醋能夠在兩至三天制備完成。 無氧發酵 部分厭氧細菌,包括梭菌屬的部分成員,能夠將糖類直接轉化為乙酸而不需要乙醇作為中間體。總體反應方程式如下: C6H12O6 → 3 CH3COOH 更令工業化學感興趣的是,許多細菌能夠從僅含單碳的化合物中生產乙酸,例如甲醇,一氧化碳或二氧化碳與氫氣的混和物。 2 CO2 + 4 H2 → CH3COOH + 2 H2O 梭菌屬因為有能夠直接使用糖類的能力,減少了成本,這意味著這些細菌有比醋菌屬細菌的乙醇氧化法生產乙酸更有效率的潛力。然而,梭菌屬細菌的耐酸性不及醋菌屬細菌。耐酸性最大的梭菌屬細菌也只能生產不到10%的乙酸,而有的醋酸菌能夠生產20%的乙酸。到現在為止,使用醋酸屬細菌制醋仍然比使用梭菌屬細菌制備後濃縮更經濟。所以,盡管梭菌屬的細菌早在1940年就已經被發現,但它的工業應用仍然被限制在一個狹小的范圍。
甲醇羰基化法
大部分乙酸是通過甲基羰基化合成的。此反應中,甲醇和一氧化碳反應生成乙酸,方程式如下 CH3OH + CO → CH3COOH 這個過程是以碘代甲烷為中間體,分三個步驟完成,並且需要一個一般由多種金屬構成的催化劑(第二部中) (1) CH3OH + HI → CH3I + H2O(2) CH3I + CO → CH3COI(3) CH3COI + H2O → CH3COOH + HI 通過控制反應條件,也可以通過同樣的反應生成乙酸酐。因為一氧化碳和甲醇均是常用的化工原料,所以甲基羰基化一直以來備受青睞。早在1925年,英國塞拉尼斯公司的Henry Drefyus已經開發出第一個甲基羰基化制乙酸的試點裝置。然而,由於缺少能耐高壓(200atm或更高)和耐腐蝕的容器,此法一度受到抑制 。直到1963年,德國巴斯夫化學公司用鈷作催化劑,開發出第一個適合工業生產的辦法。到了1968年,以銠為基礎的催化劑的(cis−[Rh(CO)2I2])被發現,使得反映所需壓力減到一個較低的水平並且幾乎沒有副產物。1970年,美國孟山都公司建造了首個使用此催化劑的設備,此後,銠催化甲基羰基化制乙酸逐漸成為支配性的孟山都法。90年代後期,英國石油成功的將Cativa催化法商業化,此法是基於釕,使用([Ir(CO)2I2]) ,它比孟山都法更加綠色也有更高的效率,很大程度上排擠了孟山都法。
乙醇氧化法
由乙醇在有催化劑的條件下和氧氣發生氧化反應製得。 C2H5OH + O2 CH3COOH + H2O
乙醛氧化法
在孟山都法商業生產之前,大部分的乙酸是由乙醛氧化製得。盡管不能與甲基羰基化相比,此法仍然是第二種工業制乙酸的方法。乙醛可以通過氧化丁烷或輕石腦油製得,也可以通過乙烯水合後生成。當丁烷或輕石腦油在空氣中加熱,並有多種金屬離子包括鎂,鈷,鉻以及過氧根離子催化,會分解出乙酸。化學方程式如下: 2 C4H10 + 5 O2 → 4 CH3COOH + 2 H2O 此反應可以在能使丁烷保持液態的最高溫度和壓力下進行,一般的反應條件是150℃和55 atm。副產物包括丁酮,乙酸乙酯,甲酸和丙酸。因為部分副產物也有經濟價值,所以可以調整反應條件使得副產物更多的生成,不過分離乙酸和副產物使得反應的成本增加。 在類似條件下,使用上述催化劑,乙醛能被空氣中的氧氣氧化生成乙酸 2 CH3CHO + O2 → 2 CH3COOH 使用新式催化劑,此反應能獲得95%以上的乙酸產率。主要的副產物為乙酸乙酯,甲酸和甲醛。因為副產物的沸點都比乙酸低,所以很容易通過蒸餾除去。
乙烯氧化法
由乙烯在催化劑(所用催化劑為氯化鈀:PdCl2、氯化銅:CuCl2和乙酸錳:(CH3COO)2Mn)存在的條件下,與氧氣發生反應生成。此反應可以看作先將乙烯氧化成乙醛,再通過乙醛氧化法製得。
丁烷氧化法
丁烷氧化法又稱為直接氧化法,這是用丁烷為主要原料,通過空氣氧化而製得乙酸的一種方法,也是主要的乙酸合成方法。 2CH3CH2CH2CH3 + 5O2=4CH3COOH + 2H2O
編輯本段命名
乙酸既是常用的名稱,也是國際純粹與應用化學聯合會(IUPAC)規定的官方名稱。俗稱醋酸(acetic acid),該名稱來自於拉丁文中的表示醋的詞「acetum」。無水的乙酸在略低於室溫的溫度下(16.7℃),能夠轉化為一種具有腐蝕性的冰狀晶體,故常稱無水醋酸為冰醋酸,冰乙酸,冰形醋酸,乙酸冰。 乙酸的實驗式(即最簡式)為CH2O,化學式(即分子式)為C2H4O2。常被寫為CH3-COOH、CH3COOH或CH3CO2H來突出其中的羧基,表明更加准確的結構。失去H後形成的離子為乙酸根陰離子。乙酸最常用的正式縮寫是AcOH 或 HOAc,其中Ac代表了乙酸中的乙醯基(CH3CO)。酸鹼中和反應中也可以用HAc表示乙酸,其中Ac代表了乙酸根陰離子(CH3COO),但很多人認為這樣容易造成誤解。上述兩種情況中,Ac都不應與化學元素中錒的縮寫混淆。
編輯本段易錯點
乙酸與「蟻酸」「己酸」不同 ① 蟻酸(formic acid) = 甲酸(methanoic acid) 化學式:HCOOH(HCO2H) ② 羊油酸(caproic acid) = 己酸(hexanoic acid) (網路小詞典中譯「乙酸」為「caproic acid」有誤) 化學式CH3(CH2)4COOH 乙酸(acetic acid)
編輯本段物理性質
乙酸在常溫下是一種有強烈刺激性酸味的無色液體。 乙酸的熔點為16.6℃(289.6 K)。沸點117.9℃(391.2 K)。相對密度1.05,閃點39℃,爆炸極限4%~17%(體積)。純的乙酸在低於熔點時會凍結成冰狀晶體,所以無水乙酸又稱為冰醋酸。 乙酸易溶於水和乙醇,其水溶液呈弱酸性。乙酸鹽也易溶於水。 下為中華人民共和國關於工業乙酸的國家標准 指標名稱 指標
優等品 一等品 合格品
色度, Hazen 單位(鉑 - 鈷色號)≤ 10 20 30
乙酸含量, % ≥ 99.8 99.0 98.0
水分, % ≤ 0.15 - -
甲酸含量, % ≤ 0.06 0.15 0.35
乙醛含量, % ≤ 0.05 0.05 0.10
蒸發殘渣, % ≤ 0.01 0.02 0.03
鐵含量(以 Fe 計), % ≤ 0.00004 0.0002 0.0004
還原高錳酸鉀物質, min ≥ 30 5 -

編輯本段化學性質
酸性
羧酸中,例如乙酸,的羧基氫原子能夠部分電離變為氫離子(質子)而釋放出來,導致羧酸的酸性。乙酸在水溶液中是一元弱酸,酸度系數為4.8,pKa=4.75(25℃),濃度為1mol/L的醋酸溶液(類似於家用醋的濃度)的pH為2.4,也就是說僅有0.4%的醋酸分子是解離的。 乙酸的酸性促使它還可以與碳酸鈉、氫氧化銅、苯酚鈉等物質反應。 2CH3COOH + Na2CO3 =2CH3COONa + CO2 ↑+ H2O 2CH3COOH + Cu(OH)2 =Cu(CH3COO)2 + 2H2O CH3COOH + C6H5ONa =C6H5OH (苯酚)+ CH3COONa
二聚物
乙酸的二聚體,虛線表示氫鍵 乙酸的晶體結構顯示 ,分子間通過氫鍵結合為二聚體(亦稱二締結物),二聚體也存在於120℃的蒸汽狀態。二聚體有較高的穩定性,現在已經通過冰點降低測定分子量法以及X光衍射證明了分子量較小的羧酸如甲酸、乙酸在固態及液態,甚至氣態以二聚體形式存在。當乙酸與水溶和的時候,二聚體間的氫鍵會很快的斷裂。其它的羧酸也有類似的二聚現象。 (兩端連接H)
溶劑
液態乙酸是一個親水(極性)質子化溶劑,與乙醇和水類似。因為介電常數為6.2,它不僅能溶解極性化合物,比如無機鹽和糖,也能夠溶解非極性化合物,比如油類或一些元素的分子,比如硫和碘。它也能與許多極性或非極性溶劑混合,比如水,氯仿,己烷。乙酸的溶解性和可混合性使其成為了化工中廣泛運用的化學品。
化學反應
對於許多金屬,乙酸是有腐蝕性的,例如鐵、鎂和鋅,反應生成氫氣和金屬乙酸鹽。因為鋁在空氣中表面會形成氧化鋁保護層,所以鋁制容器能用來運輸乙酸。金屬的乙酸鹽也可以用乙酸和相應的鹼性物質反應,比如最著名的例子:小蘇打與醋的反應。除了醋酸鉻(II),幾乎所有的醋酸鹽能溶於水。 Mg(s)+ 2 CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g) NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l) 乙酸能發生普通羧酸的典型化學反應,特別注意的是,可以還原生成乙醇,通過親核取代機理生成乙醯氯,也可以雙分子脫水生成酸酐。 同樣,乙酸也可以成酯或氨基化合物。如乙酸可以與乙醇在濃硫酸存在並加熱的條件下生成乙酸乙酯(本反應為可逆反應,反應類型屬於取代反應中的酯化反應)。 CH3COOH + CH3CH2OH<==> CH3COOCH2CH3 + H2O 440℃的高溫下,乙酸分解生成甲烷和二氧化碳或乙烯酮和水。
鑒別
乙酸可以通過其氣味進行鑒別。若加入氯化鐵(III),生成產物為深紅色並且會在酸化後消失,通過此顏色反應也能鑒別乙酸。乙酸與三氧化砷反應生成氧化二甲砷,通過產物的惡臭可以鑒別乙酸。
編輯本段生物化學
乙酸中的乙醯基,是生物化學中所有生命的基礎。當它與輔酶A結合後,就成為了碳水化合物和脂肪新陳代謝的中心。然而,乙酸在細胞中的濃度是被嚴格控制在一個很低的范圍內,避免使得細胞質的pH發生破壞性的改變。與其它長鏈羧酸不同,乙酸並不存在於甘油三酸脂中。但是,人造含乙酸的甘油三酸脂,又叫甘油醋酸酯(甘油三乙酸酯),則是一種重要的食品添加劑,也被用來製造化妝品和局部性葯物。 乙酸由一些特定的細菌生產或分泌。值得注意的是醋菌類梭菌屬的丙酮丁醇梭桿菌,這個細菌廣泛存在於全世界的食物、水和土壤之中。在水果或其他食物腐敗時,醋酸也會自然生成。乙酸也是包括人類在內的所有靈長類生物的陰道潤滑液的一個組成部分,被當作一個溫和的抗菌劑
編輯本段製取方式
主要製法有: ① 乙醛催化氧化法: 2CH3CHO+O2→2CH3COOH ② 甲醇低壓羰基化法(孟山都法): CH3OH+CO→CH3COOH 其他方法
③ 低碳烷或烯液相氧化法: 2C4H10+5O2→4CH3COOH+2H2O 以上各反應皆需催化劑與適宜的溫度、壓力。除合成法還有發酵法,我國用米或酒釀造醋酸。 乙酸最初由發酵法及木材幹餾法製得,現一般由乙醇或乙醛氧化製得,近年來利用丁烷為原料通過催化、氧化製得(醋酸鈷為催化劑,空氣氧化後,得到的乙酸是含有酮、醛、醇等的混合物)。
編輯本段對環境的影響:
一、健康危害 侵入途徑:吸入、食入、經皮吸收。 健康危害:吸入後對鼻、喉和呼吸道有刺激性。對眼有強烈刺激作用。皮膚接觸,輕者出現紅斑,重者引起化學灼傷。誤服濃乙酸,口腔和消化道可產生糜爛,重者可因休克而致死。 慢性影響:眼瞼水腫、結膜充血、慢性咽炎和支氣管炎。長期反復接觸,可致皮膚乾燥、脫脂和皮炎。 二、毒理學資料及環境行為 毒性:屬低毒類。 急性毒性:LD503530mg/kg(大鼠經口);1060mg/kg(兔經皮);LC505620ppm,1小時(小鼠吸入);人經口1.47mg/kg,最低中毒量,出現消化道症狀;人經口20~50g,致死劑量。 亞急性和慢性毒性:人吸入200~490mg/m3×7~12年,有眼瞼水腫,結膜充血,慢性咽炎,支氣管炎。 致突變性:微生物致突變:大腸桿菌300ppm(3小時)。姊妹染色單體交換:人淋巴細胞5mmlo/L。 生殖毒性:大鼠經口最低中毒劑量(TDL0):700mg/kg(18天,產後),對新生鼠行為有影響。大鼠睾丸內最低中毒劑量(TDL0):400mg/kg(1天,雄性),對雄性生育指數有影響。 危險特性:其蒸氣與空氣形成爆炸性混合物,遇明火、高熱能引起燃燒爆炸。與強氧化劑可發生反應。 燃燒(分解)產物:一氧化碳、二氧化碳。 醋酸是一種極為重要的化工產品,它在有機化工中的地位與無機化工中的硫酸相當。醋酸的主要用途有: (1)醋酸乙烯。醋酸的最大消費領域是製取醋酸乙烯,約占醋酸消費的44%以上,它廣泛用於生產維綸、聚乙烯醇、乙烯基共聚樹脂、黏合劑、塗料等。 (2)溶劑。醋酸在許多工業化學反應中用作溶劑。 (3)醋酸纖維素。      醋酸可用於制醋酐,醋酐的80%用於製造醋酸纖維,其餘用於醫葯、香料、染料等。 (4)醋酸酯。醋酸乙酯、醋酸丁酯是醋酸的兩個重要下游產品。醋酸乙酯用於清漆、稀釋料、人造革、硝酸纖維、塑料、染料、葯物和香料等;醋酸丁酯是一種很好的有機溶劑,用於硝化纖維、塗料、油墨、人造革、醫葯、塑料和香料等領域。
編輯本段其他補充,滿足國際運輸操作人員需要
中文名稱:醋酸 別 名:醋酸、冰醋酸 英文名稱:ACETIC ACID,Ethanic acid,Vinegar acid 英文縮寫:A C 聯合國編號(UNNO):2789 化學式:CH3COOH
編輯本段理化性質
相對密度(水為1):1.050 凝固點(℃):16.7 沸點(℃):118.3 粘度(Pa.s):1.22 20℃時蒸氣壓(KPa):1.5 外觀及氣味:無色液體,有刺鼻的醋味。 溶解性:能溶於水、乙醇、乙醚、四氯化碳及甘油等有機溶劑。 相容性:材料:稀釋後對金屬有強烈腐蝕性,316#和318#不銹鋼及鋁可作良好的結構材料。 國家產品標准號 :GB/T 676-2007
編輯本段燃燒爆炸危險性
閃點(℃):39 爆炸極限(%):4.0-17 靜電作用:可能有 聚合危害: 燃燒性: 自燃溫度: 危險特性:能與氧化劑發生強烈反應,與氫氧化鈉與氫氧化鉀等反應劇烈。稀釋後對金屬有腐蝕性。 消防方法:用霧狀水、乾粉、抗醇泡沫、二氧化碳、滅火。用水保持火場中容器冷卻。用霧狀水驅散蒸氣,趕走泄漏液體,使稀釋成為不燃性混合物。並用水噴淋去堵漏的人員。
編輯本段泄漏處理
污染排放類別:Z 泄漏處理:切斷火源,穿戴好防護眼鏡、防毒面具和耐酸工作服,用大量水沖洗溢漏物,使之流入航道,被很快稀釋,從而減少對人體的危害。
編輯本段健康危害性
健康危害性評價:2, 3, 2 閾限值(TLV):50 大鼠經口LD50:3530(mg/kg) 健康危害:吸入後對鼻、喉、和呼吸道強烈的刺激作用。皮膚接觸,輕者出現紅斑,重者引起化學灼傷。誤服農醋酸,口腔和消化道可因休克致死。
編輯本段急救
皮膚接觸:皮膚接觸先用水沖洗,再用肥皂徹底洗滌。 眼睛接觸:眼睛受刺激用水沖洗,再用干布拭擦,嚴重的須送醫院診治。 吸 入:若吸入蒸氣得使患者脫離污染區,安置休息並保暖。 食 入:誤服立即漱口,給予催吐劑催吐,急送醫院診治。
編輯本段防護措施
呼吸系統防護:空氣中深度濃度超標時,應佩戴防毒面具。 眼睛防護:戴化學安全防護眼鏡。 手防護:戴橡皮手套。 其它:工作後,淋浴更衣,不要將工作服帶入生活區。
編輯本段儲運
適裝船型:3 適裝艙型:不銹鋼艙 儲運注意事項:注意貨物溫度保持在20-35℃,即貨物溫度要大於其凝固點16.7℃防止凍結。裝卸貨完畢時要盡量排盡管系中的殘液。
編輯本段冰醋酸用途
冰醋酸是最重要的有機酸之一.主要用於醋酸乙烯、醋酐、醋酸纖維、醋酸酯和金屬醋酸鹽等,也用作農葯、醫葯和染料等工業的溶劑和原料,在照相葯品製造、織物印染和橡膠工業中都有廣泛用途. 冰醋酸是重要的有機化工原料之一,它在有機化學工業中處於重要地位.醋酸廣泛用於合成纖維、塗料、醫葯、農葯、食品添加劑、染織等工業,是國民經濟的一個重要組成部分.冰醋酸按用途又分為工業和食用兩種,食用冰醋酸可作酸味劑、增香劑.可生產合成食用醋.用水將乙酸稀釋至4-5%濃度,添加各種調味劑而得食用醋.其風味與釀造醋相似.常用於番茄調味醬、蛋黃醬、醉米糖醬、泡菜、乾酪、糖食製品等.使用時適當稀釋,還可用於製作蕃茄、蘆筍、嬰兒食品、沙丁魚、魷魚等罐頭,還有酸黃瓜、肉湯羹、冷飲、酸法乾酪用於食品香料時,需稀釋,可製作軟飲料,冷飲、糖果、焙烤食品、布丁類、膠媒糖、調味品等.作為酸味劑,可用於調飲料、罐頭等. 洗滌通常使用的冰醋酸,濃度分別為28%,56%,99%的.如果買的是冰醋酸,把28CC的冰醋酸加到72CC的水裡,就可得到28%的醋酸.更常見的是它以56%的濃度出售,這是因為這種濃度的醋酸只要加同量的水,即可得到28%的醋酸. 濃度大幹28%的醋酸會損壞醋酸纖維和代納爾纖雛. 草酸是有機酸中的強酸之一,在高錳酸鉀的酸性溶液中,草酸易被氧化生成二氧化碳和水.草酸能與鹼類起中和反應,生成草酸鹽. 醋酸也一樣,28%的醋酸具有揮發性,揮發後使織物是中性;就象氨水可以中和酸一樣,28%的醋酸也可以中和鹼. 鹼也會導致變色.用酸(如28%的醋酸)即可把變色恢復過來. 這種酸也常用來減少由丹寧復合物、茶、咖啡、果計、軟飲料以及啤酒造成的黃漬.在去除這些污漬時,28%的醋酸用在水和中性潤滑劑之後,可用到最大程度.
編輯本段乙酸反應化學方程式
乙酸與碳酸鈉:2CH3COOH+Na2CO3==2CH3COONa+CO2↑+H2O 乙酸與碳酸氫鈉:NaHCO3+CH3COOH=NaCH3COO+H2O+CO2↑ 醋酸與鹼反應:CH3COOH+OH-=CH3COO- +H2O 醋酸與弱酸鹽反應:2CH3COOH+CO32-=2CH3COO- +H2O+CO2↑ 醋酸與活潑金屬單質反應:Fe+2CH3COOH=Fe(CH3COO)2+H2↑ 醋酸與金屬氧化物反應:2CH3COOH+ZnO=Zn(CH3COO)2+H2O 醋酸與醇反應:CH3COOH+C2H5OH=CH3COOC2H5+H2O(條件是加熱,濃硫酸催化,可逆反應) 乙酸與鋅反應:2CH3COOH +Zn =(CH3COO)2Zn +H2↑ 乙酸與鈉反應:2CH3COOH+2Na=2CH3COONa+H2↑

Ⅱ 非鹵代烴類 (含石油烴) (Non-halogenated Hydrocarbons) 的測定

85.2.6.1 土壤中礦物油的測定 (5 分子篩吸附法)

方法提要

在提取非鹵代烴類過程中可能有少量土壤有機酸、腐殖酸、脂肪酸、油脂等一起被萃取出來,為了除去這些干擾物質,採用 5A 分子篩吸附法。根據礦物油在近紅外區(3.4μm) 有特徵峰,從而可以進行定量分析。

儀器和裝置

萬分之一天平。

紅外分光光度計。

5 分子篩 (MS) 。

試劑

四氯化碳 (AR) (重蒸餾) 。

無水硫酸鈉 (AR) 。

標准油的制備 在萬分之一分析天平上精確稱取 20 號重柴油 0.5000g,以四氯化碳溶於 250mL 容量瓶中,此液含油 20mg/mL 的標准儲備液。

分析步驟

1) 稱取土樣約 25g (視土壤含油量而定) 於 125mL 磨口三角瓶中,加鹽酸調節 pH值至 3 以下,加入 30mL 四氯化碳,加蓋輕輕旋轉搖動 1~2min,放置過夜。翌日在 70 水浴上熱浸 1h,將上清液濾入三角瓶中,再在熱水浴上分別用 10mL 四氯化碳浸提土壤 2次,每次 0.5hr,合並濾液,加入 10g 無水硫酸鈉,每隔 10min 搖動一次,0.5h 後過濾於50mL 容量瓶中,再加入 5g 5 分子篩,每 15min 搖動一次,1h 後過濾。在測定時將其到入 1cm 厚的石英槽中,用四氯化碳為參比溶液,在紅外分光光度計上,於 3.4μm 波長處測定吸光度。以 3.4μm 處吸光強度 (峰高) 按基線法在記錄紙上量出相應峰高值,由校準曲線查出其相應含量。

2) 校 准 曲 線。吸 取標准 油 儲 備 液 0.10mL、0.20mL、0.30mL、0.40mL、0.50mL、0.60mL (此 液 各 為 0.20mg / mL、0.40mg / mL、0.60mg / mL、0.80mg / mL、1.00mg / mL、1.20mg / mL) ,用四氯化碳定容於 10mL 容量瓶中,然後在紅外分光光度計上進行測定,記錄各點於 3.4μm 處的吸光強度。以吸光強度為縱坐標,濃度為橫坐標,繪制校準曲線圖。

3) 結果計算。

岩石礦物分析第四分冊資源與環境調查分析技術

85.2.6.2 非鹵代有機物的氣相色譜法分析

參見第 82章 82.22 氣相色譜分析方法。

本節編寫人: 饒竹 (國家地質實驗測試中心) 。

Ⅲ 石油污染怎麼辦

治理方法
(一)土壤石油污染治理

2O世紀8O年代以前.治理石油烴污染土壤還僅限於物理和化學方法,即熱處理和化學浸出法。熱處理法是通過焚燒或煅燒,可凈化土壤中大部分有機污染物。但同時亦破壞土壤結構和組分,且價格昂貴而很難實施。化學浸出和水洗也可以獲得較好的除油效果。但所用的化學試劑的二次污染問題限制了其應用。早在2O世紀7O年代。為了解決輸油管線和儲油罐發生故障漏油和溢油時土壤被石油污染的問題,美國埃索研究和工程公司就已經開始尋找清潔的生物解決方法,並且其實驗室研究找到一種有效的「細菌播種法 ,開了生物修復石油污染土壤先河。上世紀8O年代以來,污染土壤的生物修復技術越來越引起人們的關注.生物修復技術也取得了很大進步,正在逐漸成熟。

生物修復是利用生物的生命代謝活動減少土壤環境中有毒有害物的濃度,使污染土壤恢復到健康狀態的過程。目前,治理石油烴類污染土壤的生物修復技術主要有兩類:一類是微生物修復技術,按修復的地點又可分為原位生物修復和異位生物修復;另一類是植物修復法。

1.微生物修復技術

(1)原位生物修復技術

原位處理方法是將受污染土壤在原地處理。處理期間.土壤基本不被攪動,最常見的就地處理方式是土壤的水飽和區進行生物降解。除了要加人營養鹽,氧源(多為H202)外:還需引入微生物以提高生物降解的能力。有時,在污染區挖一組井.並直接注入適當的溶液,這樣就可以把水中的微生物引入到土壤中。地下水經過一些處理後,可以恢復和再循環使用,在地下水循環使用前,還可以/JnA+壤改良劑。

污染土壤經過處理,所有多環芳烴的降解都很明顯,但是.三環和多環芳烴的降解率一般明顯低於60%。因為就地處理對溫度較敏感。所以只能在氣溫大於8℃的月份進行。在一定的時間內。原位處理不可能有效地去除大多數多環芳烴,而且這種方法因受溫度和土壤類型的影響而具有一定的局限性。

(2)異位生物修復技術

異位生物修復主要包括現場處理法、預制床法、堆制處理法、生物反應器和厭氧生物處理法。

a.現場處理法

近年來國外石油烴污染生物處理的研究很多,其中土壤耕作處理是現場處理土壤污染常用的方法。被污染的廢物施在土壤上。通過施肥、灌溉和加石灰等管理措施,保持氧氣、水分和pH的最合適值,並進行耕作以改善土壤的通氣狀況,確保在污染廢物和下面土層中污染物的降解。降解過程所用的微生物多為土著微生物。但是要提高效果還需要引入馴化的微生物。

b.預制床法

現場處理中土壤耕作處理最大的缺陷是污染物可能從處理區遷移。預制床的設計可以使污染物的遷移量減至最小,因為它具有濾液收集和控制排放系統。預制床的底面為滲透性低的物質,如高密度的聚乙烯或粘土。將污染土壤轉移到預制床上,通過施肥、灌溉,調節pH,有時還加入微生物和表面活性劑,使其最適合污染物的降解。與同一區域的原位處理技術相比,預制床處理對三環和三環以上的多環芳烴的降解率明顯提高。

c.堆制處理法

土壤的堆制處理就是將受污染的土壤從污染地區挖掘起來,防止污染物向地下水或更大的地域擴散.運輸到一個經過處理的地點(布置防止滲漏底,通風管道等)堆放,形成上升的斜坡,並進行生物處理。堆製法是生物修復技術中的一種新型替代技術。堆制處理過程對污染土壤中的多環芳烴降解,多環芳烴的降解隨著苯環數的增加而降低。當多環芳烴的初始濃度提高約5O倍時,除熒、蒽外,其他多環芳烴的降解隨著污染濃度的提高而降低。

d.生物反應器法

生物反應器法是將污染土壤置於一專門的反應器中處理。生物反應器一般建在現場或特定的處理區。通常為卧鼓形和升降機形,有間隙式和連續式兩種。因為反應器可使土壤與微生物及其他添加物如營養鹽,表面活性劑等徹底混合,能很好的控制降解條件,因而處理速度快,效果好。生物反應器處理的過程為:先挖出土壤與水混合為泥漿,然後轉入反應器。為了提高降解速率,常在反應器先前處理的土壤中分離出已被馴化的微生物,並將其加入到准備處理的土壤中.

e.厭氧生物修復法

修復受石油烴污染土壤的研究已開發了生物堆層、堆肥及土壤泥漿反應器等好氧修復工藝,但分離獲得某些降解菌時。一些降解菌伴有產生高生態風險的產物。最近的研究表明以厭氧還原脫氯為特徵的厭氧微生物修復技術有很大的潛力。

(2)植物修復技術

目前,對土壤有機污染的生物修復研究較多,但是,多集中在微生物作用上。事實上,植物對污染物的去除起著直接和間接的重要作用。植物生物修復是利用植物體內對某些污染物的積累、植物代謝過程對某些污染物的轉化和礦化,植物根圈與根莖的共生關系增加微生物的活性的特點。加速土壤污染物降解速度的過程。

植物修復的方式包括植物提取、植物降解和植物穩定化三種。植物提取是指利用植物吸收積累污染物,待收獲後才進行處理。收獲可以進行熱處理,微生物處理和化學處理。植物降解是利用植物及相關微生物區系將污染物轉化為無毒物質。植物穩定化是指植物在同土壤的共同作用下.將污染物固定,以減少其對生物與環境的危害。植物根際使土壤環境發生變化,起到了改善和調節作用,從而有利於污染物的降解。因此通過選擇適當植物和調控土壤條件等手段.可以實現污染土壤的快速修復。

植物生物修復是一項利用太陽能動力的處理系統.具有處理費用低,減少場地破壞等優點而受到普遍重視。據美國實踐,種植管理的費用在每公頃200~1000美元之間.即每年每立方米的處理費為0.02~1.00美元.比物理化學處理的費用低幾個數量級。

(二)水體石油污染治理

水體石油污染和土壤治理不同,水具有流動性,不及時處理會使污染范圍以很快的速度不斷擴大。因此.水體石油污染首先是控制污染然後再對污染水進行處理。

(1)海洋、江河、湖泊水體治理

水體石油污染治理對海洋、江河、湖泊石油污染治理,目前僅限於化學破乳、氧化處理方法進行分解處理和機械物理的方法進行凈化吸附。清除海洋、江河、湖泊石油污染是非常困難的。防止油水合二為一的唯一選擇是噴灑清除劑,因為只有化學葯劑才能使原油加速分解,形成能消散於水中的微小球狀物。清除水面石油污染還有一些物理方法,如用抽吸機吸油,用水柵和撤沫器刮油,用油纜阻擋石油擴散。英國有一位農場主發明了一種用機編禾草排治理石油污染的方法,不僅能防止石油在海中擴散,而且能吸收比自身質量多15倍的石油,可防止油輪流出的石油污染水岸,禾草中又以大麥秸稈治污最為有效。1992年,一艘油輪在舍德蘭群島附近失事後,在海上放置了22千米長的禾草排,從而保護了海濱浴場和漁場不致遭受污染。而俄羅斯莫斯科精細化工科學院的教授奧列格.喬姆金研製出了用農作物廢料清除石油污染的全新方法。演示實驗中,喬姆金在一盆水中擠了幾滴重油,水盆中頓時漂起了一層薄薄的油花。緊接著喬姆金向水盆中撒人了一小撮稻米殼,幾分鍾後水盆中的油跡開始減少,二小時後水盆中的油跡完全消失了。

而對收集上來的污水以及石油工廠排出來的石油污水採用生物處理法。生物處理法也稱生化處理法。生物處理法是處理廢水中應用最久、最廣和相當有效的一種方法。它是利用自然界存在的各種微生物,將廢水中有機物進行降解,達到廢水凈化的目的。

(2)地下水體治理

對地下水石油污染治理,採用水動力學方法,通過抽水井或注水井控制流場,可以防止石油和石油化工產品污染的進一步擴大,同時對抽取出來的受污染的地下水進行處理。

近年來。臭氧氧化技術對石油污染的地下水處理取得了很大進展。經臭氧氧化反應後,水體中有機物種類增加,經過一定時間接觸氧化反應後,苯系物和稠環芳烴類在水中的相對含量有較大幅度下降,但酯、醛、酮類和烷烴類在水中的相對含量卻大幅上升。一般認為,水中芳香烴物質危害性較大,多具有較大的毒性和致癌性,而烷烴、酯類和其他低分子物質的危害性小得多。由上我們可以看出.臭氧氧化法是把危害性大的污染物轉化為危害小的污染物.污染水體沒有得到根本治理,因此臭氧氧化法與吹脫、活性炭吸附、生物氧化等處理方法配合使用,才能得到良好的處理效果。

(三)空氣石油污染治理

石油對空氣的污染僅限於其所含的具有揮發性的物質以及輕質石油產品了,而不像對於土壤和水體,石油中的粘稠膠體可以在這兩者中成片成塊的形成時間很長的污染。雖然如此,石油產品對空氣的污染是非常嚴重的,對空氣相對於水體更具有流動和擴散性,治理更加困難。到目前為止,對於石油產品對空氣污染還沒有一種很好的治理方法,局限於採用控制油氣排放等措施,如制定汽車尾氣排放標准等.而具體的污染治理方法還有待於人類進行探討和研究。

Ⅳ 溶劑脫蠟重石蠟餾分是個什麼東西CAS號 64742-65-0還有請告訴我國內那有

國內你可以問下揚州溶劑 我們工廠一般石油溶劑都是那裡購買的

MSDS 的第2 - 第15部分:
部分 2 - 危險性概述
GHS 劃分類別
特定目標器官毒性-單次接觸 (呼吸刺激)第3類
特定目標器官毒性-單次接觸 (麻醉)第3類
眼睛刺激第 2B類
致癌物第1A類
致癌物第1B類

應急響應概述
危害
危險
基於GHS標准所做的分類:
H320 造成眼刺激
H335 可能會造成呼吸刺激
H336 可能會造成倦睡和昏眩
H350 可能致癌

預防聲明
預防
代碼 Phrase
P201 使用前,索取專用說明書。
P202 操作前,必須閱讀並了解所有安全注意事項。
P261 避免吸入粉塵/煙/氣體/煙霧/蒸汽/噴霧。
P264 操作後徹底清洗。
P271 只能在室外或通風良好的環境操作。
P281 按要求使用個人防護設備。
響應
代碼 Phrase
P304+P340 如誤吸入:將受害人轉移到空氣新鮮處,保持呼吸數十的休息姿勢。
P305+P351+P338 如進入眼睛:用水小心沖洗幾分鍾。如帶隱形眼鏡並可方便地取出,取出眼鏡,然後繼續沖洗。
P308+P313 如接觸到或有疑慮,求醫治療/咨詢。
P312 如感不適,呼叫解毒中心或醫生。
P337+P313 如仍覺得眼睛有刺激感,須就醫。
儲存
代碼 Phrase
P403+P233 存放在通風良好的地方。 保持容器密閉。
P405 存放處須加鎖。
廢棄
代碼 Phrase
P501 按照相關規章處置內裝物和容器。

部分 3 - 成分/組成信息

名稱 CAS序列號 %
溶劑脫蠟重石蠟餾分 64742-65-0 >98

部分 4 - 急救措施

食入

* 禁止催吐。
* 如果病人發生嘔吐,使病人傾斜或左邊側卧(如果可能,保持低頭體位)以保持呼吸道通暢,防止嗆吸。

避免給飲牛奶或油類。避免給飲酒精。如果出現自發嘔吐時,要保持患者頭朝下,使病人頭的位置比臀部低,以避免嘔吐物嗆入氣管(肺)中。
眼睛
如果眼接觸了本產品:

* 立即用流動的清水沖洗,並扒開上、下眼瞼,保證徹底清洗,然後眨眼。
* 如疼痛持續或復發,應該就醫。

皮膚
如果本物質與皮膚接觸:

* 用流動水(肥皂水)沖洗皮膚和頭發。
* 如果發生刺激,就醫。

吸入

* 如果吸入煙或燃燒產物,把病人移出出事地點至空氣新鮮處。
* 使病人平躺,注意保暖和休息。救護前應取出假牙等假體,以防堵塞氣管。

醫生須知
對於急性或反復短時間暴露於石油餾分或相關烴:

* 食入或吸入純石油餾分引起的生命危險主要是由於呼吸衰竭。
* 應立即檢查病人呼吸窘迫體征(如發紺、呼吸急促、肋間退縮和意識遲鈍或喪失), 並給輸氧氣。如果病人潮氣量不足或動脈血氣體壓力失常 (氧壓低於 50 mm Hg)應進行氣管插管。

對症治療。

* 多年大量和持續性皮膚污染能引起發育異常的病變。接觸本物品也能加重原有的皮膚病。
* 一般來說,食入高粘性、低揮發性的物品(大部分油類和油狀物)一般不需要催吐。

部分 5 - 消防措施

滅火介質

* 泡沫。
* 化學乾粉。

消防措施

* 報告消防隊,並告知事故位置與危害特性。
* 穿全身防護服,並佩戴呼吸設備。

火災/爆炸危害

* 物質可燃。
* 受熱或接觸明火,有輕微的火災危害。

燃燒產物有:, 二氧化碳, 磷的含氧化物(POx), 硫的氧化物(SOx), 有機物燃燒產生的其它類型的熱解產物。
可能產生有毒煙霧。
能釋放出腐蝕性煙霧。
火災禁忌
避免物質被氧化劑,即硝酸鹽、氧化性酸、含氯漂白粉、游泳池消毒氯氣等物質污染,可能導致點燃。

部分 6 - 泄漏應急措施

小泄漏
溢出後容易打滑。

* 消除所有的點火源。
* 立即清理所有泄漏物。

大量泄漏

* 疏散該區域人員,並轉移至逆風處。
* 向消防局報警,並告知事故地點及危害特性。

溢出後容易打滑。

個體防護設備的建議位於本MSDS的第八部分。

部分 7 - 操作處置與儲存

操作程序

* 容器,即使是那些已經被清空的,也可能會存在具有爆炸性的蒸汽。
* 不準對容器或在容器附近切割,鑽孔,粉碎,焊接或進行類似的操作。

* 在用泵抽吸過程中產生的靜電放電可能會導致火災。確保所有設備的電器連線接地。 限制泵使用時的線速度,從而避免產生靜電放電 (小於等於1米/秒直到填充管道浸沒於兩倍它的直徑,然後小於等於7米/秒)。
* 防止液柱飛濺。

* 避免所有的個體接觸,包括吸入。
* 當有接觸危險時,穿戴防護服。

適當容器

* 金屬罐或筒。
* 按照生產商的要求進行包裝。

儲存禁配
注意:水接觸加熱的物質能夠引起發泡或發生蒸汽爆炸,並能因為熱物質的大范圍濺射而引起嚴重燒傷。物質漫出容器可能會引起火災。
避免與氧化劑反應
儲存規定

* 儲存在生產商供應的原始容器里。
* 保持容器嚴實封閉。

適當容器

* 金屬罐或筒。
* 按照生產商的要求進行包裝。

儲存禁配
注意:水接觸加熱的物質能夠引起發泡或發生蒸汽爆炸,並能因為熱物質的大范圍濺射而引起嚴重燒傷。物質漫出容器可能會引起火災。
避免與氧化劑反應
儲存規定

* 儲存在生產商供應的原始容器里。
* 保持容器嚴實封閉。

部分 8 - 接觸控制和個體防護

接觸控制
以下物質在我們的記錄中沒有OEL值
• 溶劑脫蠟重石蠟餾分: CAS:64742-65-0

個體防護

呼吸器
•充足容量的A-P種過濾器. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)
眼睛

* 帶側邊的安全護目鏡。
* 化學護目鏡。

手/腳
手套類型的適用性和耐用性取決於使用方法。
因素諸如:

* 接觸的頻率和持續時間,
* 手套材料的耐化學性能,

戴化學防護手套(如聚氯乙烯 PVC)。
穿安全鞋或安全靴(如橡膠材料)。
其它

* 應該提供並要求使用肯定對人類致癌的物質的工作人員在進入受控制的地點前穿戴干凈的全身防護服(工作服、全身服裝或長袖襯衫和褲子)、鞋套和手套。
* 必須提供並要求進行與致癌性物質有關的搬運工作的工人穿戴半臉過濾型呼吸面具,此呼吸面具應該裝有過濾灰塵、煙霧和氣霧的過濾器、或純化空氣的罐或板。

* 人員每一次離開含有對人類肯定致癌的物質的地點前,必須脫去防護服並將服裝和其它保護性設備保留在出口。每日最後一次離開地點時,應把那一天使用的服裝和設備在出口地點放入透不過的容器里去污或廢棄。必須用適當的標簽表明這些透不過的容器的內含物。 對於保修和去污工作,應該提供並要求有允許進入地點的工人穿戴干凈而透不過的服裝,包括手套、靴子和連續性提供了空氣的帽兜。
* 工人脫去防護服前必須進行去污,他們在脫去服裝和帽兜前應該進行去污並淋浴。

* 工作服。
* PVC (聚氯乙烯)圍裙。

呼吸器
呼吸器種類和型號的選擇取決於呼吸區域污染物的等級以及污染物的化學性質。防護系數 (定義為面具外對面具內污染物的比率) 也是重要的方面。
物質的局部濃度,數量以及使用條件決定了需要的個人防護設備類型
如需更多信息,請參考詳細的CHEMWATCH數據(如有可用的),或請咨詢你的職業健康與安全顧問。

工程式控制制

* 接觸肯定對人類的致癌物質的人員必須得到單位的允許才能被暴露,他們也必須工作在受管理的地點。
* 人員必須在隔離地點工作,如"手套盒"。

部分 9 - 理化特性

物理性質
液體。
不能與水混合。
浮在水上。
狀態 液體 分子量 不適用
熔點 (°C) 無 粘性 無
沸點范圍(C) >350 水中溶解度(g/L) 不混溶
閃點(C) 216 (COC) pH (1% 溶液) 不適用
分解溫度(℃) 無. pH (按供應) 這里不適用
自燃溫度(C) 無. 蒸氣壓(kPa) 很低.
爆炸上限(%) 無. 比重(水=1) 0.878
爆炸下限(%) 無. 相對蒸氣密度(空氣=1) >1
揮發性成份(% 體積) 無. 蒸發速率 Very low.

部分 10 - 化學穩定性

引起不穩定性的條件

* 有不相容的物質存在。
* 物質被認為是穩定的。

關於不相容的物質信息,請參見第7部分 - 操作和儲存

部分 11 - 毒理學信息

潛在健康作用(危害)

急性健康危害
食入
意外食入該物質可對個體健康造成傷害。
食入石油烴類物質能刺激咽喉、食道、胃和小腸,並引起粘膜水腫和潰瘍。症狀包括口腔和咽喉的燒痛感。
眼睛
有一定的證據表明,本物質能刺激並損傷人的眼睛。
眼睛與石油烴類直接接觸能引起疼痛,並造成角膜上皮組織的暫時損傷。芳香烴類可引起眼睛刺激和淚腺分泌過多。
皮膚
該液體可能混溶於各種脂或油類,可使皮膚脫脂,引起一種被稱為非過敏接觸性皮炎的皮膚反應。該物質在歐盟指令的描述中認為不會引起刺激性皮炎。
重復接觸可能引起在通常操作和使用後,皮膚破裂,剝落,乾燥。
未癒合的傷口、被擦傷或刺激的皮膚都不應該暴露於本物質。
本物質能夠加重任何原有的皮炎病症。
通過割傷、擦傷或其他損傷進入血液,可能產生全身損傷和有害作用。 在使用該物質前應該檢查皮膚, 確保任何損傷處得到合理的保護後才能使用該物質。
吸入
吸入蒸氣可能引起瞌睡和頭昏眼花。可能伴隨昏迷,嗜睡, 警惕性下降,反射作用消失,失去協調性並感到眩暈。
在正常加工處理過程中,吸入本物質的氣溶膠(霧、煙),可能會損害健康。
有證據表明,本物質能夠刺激呼吸道。身體對此刺激的反應會進一步損害肺。
吸入危害會隨著溫度的升高而增加。
吸入高濃度的混合烴能導致麻醉,並有惡心、嘔吐和暈眩等現象。低分子量的烴類(C2-C12)會刺激粘膜,並引起共濟失調、眩暈、惡心、精神錯亂、頭痛、厭食、嗜睡、震顫和木僵。
中樞神經系統(CNS)抑制引起的症狀包括全身不適、眩暈、頭痛、頭暈、惡心、麻醉、反應減慢和言語不清,並能發展到不省人事。嚴重中毒可抑制呼吸並導致死亡。

慢性健康危害
有充分的證據表明該物質會直接引起人類發生癌症。
有限的證據表明反復或長期職業接觸可能會產生涉及器官或生化系統累積性的健康影響。
長期或不斷接觸混合烴能引起木僵,伴有頭暈、無力、視覺障礙、體重下降和貧血、肝臟與腎臟功能降低。皮膚接觸可引起皮膚乾燥、破裂和發紅。
對小白鼠反復外用輕度加氫精製的油類(特別是石蠟油類),能引起小白鼠發生皮膚腫瘤;經深度加氫精製的油類並不引起腫瘤的發生。
油可能接觸皮膚或被吸入。長期接觸可引起毛囊炎、濕疹、面部色素沉著和腳掌生成疣。

毒性 與 刺激性
溶劑脫蠟重石蠟餾分:
除特別說明,數據均引用自RTECS-化學物質毒性作用記錄
警告: 該物質被IARC列為類別1:對人類有致癌性。

部分 12 - 生態學信息

沒有數據

部分 13 - 廢棄處置

* 容器清空後仍可能有化學品危害或危險存在。
* 如有可能,請將容器返還給供應商循環使用。

絕不能讓洗滌設備用的水進入下水道。要把所有洗滌用的水收集起來,以便處理後排出。

* 盡可能回收本物質,或咨詢製造商有關回收的方法。
* 聯系州級土地廢棄物管理部門有關廢棄處置。

部分 14 - 運輸信息

需要的標簽:
未被規定為危險品運輸: UN,IATA,IMDG

部分 15 - 法規信息

法規
pparaffinic distillate, heavy, solvent-dewaxed (mild) (CAS: 64742-65-0) is found on the following regulatory lists;
"OSPAR National List of Candidates for Substitution – Norway",中國現有化學物質名錄
本化學品安全技術說明書遵照了以下相關國家標准:
GB/T 16483-2008, GB 13690-2009, GB 6944-2005, GB/T 15098-2008, GB 15258-2009, GB 190-2009, GB 12268-2005,GBZ 2-2002以及相關法規:
《道路危險貨物運輸管理規則》 (交通部2005年頒布)
《危險化學品安全管理條例》(國務院2002年頒布)
聯合國《關於危險貨物運輸的建議書》(簡稱 UN RTDG)

Ⅳ 非鹵代烴類 (含石油烴) (non-halogenated hydrocarbons)的測定

氣相色譜法

方法提要

地下水和地表水樣品一般結合吹掃捕集、共沸蒸餾、真空蒸餾、分液漏斗液-液萃取、連續液-液分配提取或其他適當的富集方法 (如固相萃取法等) 富集後導入 GC/FID測定,以獲得適當的定量限。

柴油范圍有機物 (DROs) 可以用適當的溶劑萃取法處理。

汽油范圍有機物 (GROs) 可以通過吹掃捕集、自動頂空、真空蒸餾或別的適當技術導入 GC/FID。

可以使用填充柱或毛細管柱分析和檢測單獨的非鹵代烴化合物,通過改變色譜條件以達到適當的分離特性。

熔融石英毛細管柱用於分析石油烴類。

方法用於檢測各種揮發性和半揮發性非鹵代烴有機化合物,可定量檢測的化合物見表82.55。

表82.55 可檢測化合物

續表

注:b為用此技術有足夠的響應;d為通過共沸蒸餾法濃縮;ht為僅在80℃使用此方法凈化分析物;

I為該技術不適用於這種分析物;pp為低的凈化效率,導致高的EQLs;NA為不可用。

本法可用於分析石油烴,包括汽油類有機物(GROs)和柴油類有機物(DROs)。GROs指C6~C10范圍鏈烴,沸程范圍大概為60~170℃;DROs指C10~C28范圍鏈烴,沸程范圍大概為170~430℃。由於蒸發和生物降解等環境行為,特有的燃料種類或者多種燃料中的某種燃料的識別是很復雜的,有時需用其他更適合的方法識別GROs和DROs。

本法也可作為易揮發和半揮發有機物的篩選工具,獲得半定量的數據,以防止用GC-MS定量分析時過負荷。可用自動化頂空法進樣,如果已用溶劑提取法處理試樣,則可採用直接進樣,在這種情況下可以使用單點校正法。

儀器和裝置

氣相色譜儀 檢測器-火焰離子化檢測器 (FID)

吹掃捕集導入裝置。

推薦氣相色譜柱:

1) 8ft × 0.1in ID 不銹鋼或玻璃柱,填充表面有 1% sp-1000 的 Carbopack-B 60 /80目,或相當規格。

2) 6ft × 0.1in ID 不銹鋼或玻璃柱,填充表面有正辛烷的 Porasil-C 100 /120 目 (帶有化學結合相的多孔硅膠珠) ,或相當規格。

3) 30m × 0.53mm ID 熔融石英的毛細管柱,結合有 DB-Wax (或相當物質) ,膜厚 1μm。

4) 30m × 0.53mm ID 熔融石英的毛細管柱,化學結合 5% 聚甲基硅氧烷 (DB-5,SPB-5,RTx,或相當物質) ,膜厚 1.5μm。

毛細管柱是用來分析石油烴的,也可使用確認特性數據 (如色譜分離和 MDLs) 的其他色譜柱 (如 0.25~0.32mm ID 毛細管色譜柱) 。

粗徑毛細管柱前應當接 1/4in 的進樣口並且有針對於此柱子使用的特殊鈍化襯墊設計。

5mL Luer-lok 玻璃注射器。

5mL 氣密的、有針對於易揮發分析物關閉閥的注射器。

微型注射器 如 10μL 和 25μL 且帶有 0.006in ID 的針 (Hamilton 702N 或相當規格)和 100μL 注射器。

試劑

試劑水 該方法中所有提到的水均指無有機物水。

甲醇 農殘級。

石油或柴油 工業燃料 (燃料中低沸點的成分很快蒸發) 。

烷烴標准物質 包括一系列相應的正構烷烴類化合物,用來確立它們的保留時間(如用 C10~ C32作柴油的標准) 。

標准儲備溶液 由純的標准物質制備或者是購買有保證的溶液。當甲醇為目標分析物或在樣品前處理階段使用共沸蒸餾法時,標准溶液均不可用甲醇配製。標准溶液必須每隔6 個月重配一次,或發現問題時重配。

標准中間溶液 可以是單標或所有組分的混合物,用作進一步配製校準系列溶液或監控標准溶液。為防止易揮發組分的損失,應當存放在有最小液面上空的容器內並經常檢測其降解和蒸發情況。

校準系列溶液 最少配製 5 個濃度水平的校準溶液系列,用標准中間溶液配製,可用水配製 (吹掃捕集法或直接進樣) 或用二氯甲烷配製 (溶劑進樣) 。其中一個校準溶液的濃度應當等於或低於定量限,其餘標樣的濃度應當與真實樣品的預計濃度范圍符合或者應當在氣相色譜規定的工作范圍。每一個標樣都應當包含用這個方法檢測的所有分析物。易揮發的有機物標樣用純水配製。

配製精密度高的標准水溶液的注意事項:

不要將超過 20μL 的甲醇為溶劑的標樣注入 100mL 水中。

使用25μL Hamilton 702N 微量注射器或與之相當規格的注射器,如取甲醇為溶劑的標准時,針的幾何形狀的變化將會影響移入水中標樣體積的可重現性。

要快速地將初級標樣注入已填充溶劑的容量瓶中,注射後盡可能快地將針頭移開。

混合稀釋的標樣時僅需上下顛倒容量瓶 3 次。

吸取容量瓶大肚部分的標准溶液 (不要用任何瓶頸處的溶液) 。

當需要稀釋易揮發的有機物標樣時,不要用移液管稀釋標樣或轉移樣品和含水標樣。

用於吹掃捕集分析的水溶液標准不穩定,所以 1h 之後則應當丟棄,除非將標樣注滿小瓶密閉保存才可超過 1h 使用,最多不超過 24h。水溶液標樣用作共沸蒸餾時最多可以存放 1 周,存放時將標樣置於有聚四氟乙烯 (PTFE) 螺帽的密閉瓶子中,具有最小液面上空,4℃避光保存。

內標溶液 選定一個或多個內標物,所選定的內標物和分析物在分析過程中的行為應當相似,內標物應不受基質干擾的影響。一般沒有單一內標物能滿足所有限定條件。當用共沸蒸餾方法處理樣品時,推薦使用下列內標: 2-氯代丙烯腈、六氟代 -2-丙醇和六氟代 -2-甲基 -2-丙醇。

替代物標准溶液 在處理每個試樣、標准和空白時,添加一個或兩個不受干擾的替代化合物,以此來監控分析系統的功能和方法的有效性。

樣品的採集,保存和處理

1) 揮發性有機物采樣參見 82.9.1 樣品採集、保存和制備部分。

2) 半揮發性有機物。測定半揮發性有機物用的采樣容器應用肥皂和水洗滌,然後再用甲醇 (或異丙醇) 沖洗。樣品容器應是由玻璃或聚四氟乙烯制的,並帶有聚四氟乙烯(或溶劑沖洗過的鋁箔) 襯墊的螺旋蓋。強酸性或強鹼性樣品會和鋁箔反應導致樣品被污染。不能用塑料容器或蓋來貯存樣品,因為來自塑料中的酞酸酯和其他碳氫化合物可能污染樣品。應小心填裝樣品容器,以防止所採集樣品的任何部分接觸到采樣者的手套而引起污染。不能在有尾氣存在的地方採集或貯存樣品,如果樣品與采樣器接觸 (例如,使用自動采樣器) ,用試劑水通過采樣器並用作現場空白。

分析步驟

1) 試樣導入方法。所有內標、替代物和基質添加都要在試樣導入 GC / FID 系統前添加到樣品中。

a.直接進樣。直接用注射器將試樣注射到 GC 口內。

易揮發有機物 [包含汽油范圍有機物 (GROs) ]: 將含有高濃度分析物的水樣、共沸蒸餾不清潔的低沸點有機物處理得到的含水濃縮物或有機溶劑廢棄物注射入 GC 進樣口。直接注射未濃縮的水樣有很多限制,易揮發物的毒性 (TC) 達到法定限度或濃度超過10000μg /L 時才可許採用該法檢測。如果酒精濃度 > 24% ,也可以應用直接進樣檢測水樣的可燃性。

半揮發性有機物 [包含柴油范圍有機物 (DROs) ]: 將用分液漏斗液-液萃取或連續液-液分配提取處理得到的水樣的萃取物注射入 GC 進樣口。

b.吹掃捕集。

吹掃捕集分析水樣。也可用甲醇(和其他易與水混合的溶劑)提取含油水樣中待測物,隨後用吹掃捕集法測定。通常在室溫下對水樣進行吹掃捕集。有時需要將水樣加熱吹掃以降低檢測限;然而,25mL的試樣在大多數情況下都能提供足夠的靈敏度。

c.真空蒸餾。可用於將水樣、固體樣或組織樣品中易揮發有機物導入GC/FID系統。

d.自動靜態頂空。可用於將水樣、固體樣或組織樣品中易揮發有機物導入GC/FID系統。

2)推薦色譜條件。

柱1:載氣(He)流速40mL/min。溫度程序,初始溫度45℃,保持3min,以8℃/min的速度升溫,從45℃升溫至220℃,最終溫度220℃,保持5min。

柱2:載氣(He)流速40mL/min。溫度程序,初始溫度50℃,保持3min,以6℃/min的速度升溫,從50℃升溫至170℃,保持4min。

柱3:載氣(He)流速15mL/min。溫度程序,初始溫度45℃,保持4min,以12℃/min的速度升溫,從45℃升溫至220℃,保持3min。

柱4(DROS):載氣(He)流速5~7mL/min。尾吹氣(He)流速30mL/min。進樣口溫度200℃,檢測器溫度340℃。溫度程序,初始溫度45℃,保持3min,以12℃/min的速度升溫,從45℃升溫至275℃,保持12min。

3)初始校準。對於每一種樣品導入方法,建立氣相色譜操作的參數,繪制相應的不同標准曲線。對於沒有凈化的易揮發物推薦使用內標法,內標物為六氟-2-丙醇、六氟-2-甲基-2-丙醇和2-氯丙烯腈。

a.分析單一組分分析物的外標校準步驟。對於每一個目標化合物和替代物,最少准備5個不同濃度的校準標准溶液。分取一種或幾種標准儲備液於容量瓶中,用適宜的溶劑稀釋至刻度。其中某個外標溶液的濃度應該小於或等於要求的定量限(以預處理方法中確定的最終體積內未稀釋的濃度為基礎),其他校準標樣的濃度應當與真實樣品的預期濃度范圍相對應,或者由檢測器的工作范圍來確定。

用與實際試樣導入氣相色譜相同的技術導入每個校準溶液。將峰高或峰面積響應值對進樣量列表。計算每個組分分析物的校準因子(CF)。

CF=標准溶液中化合物的峰面積(或峰高)/化合物注入質量(ng)

b.DROs和GROs的外標校準步驟。用來校準的響應值表現為DROs和GROs保留時間范圍內的色譜圖全面積,包括含在單一峰內的未分開的復雜混合物。

對於每一類型燃料,最少准備5個不同濃度水平的校準溶液。分取一種或幾種標准儲備液於容量瓶中,用適宜的溶劑稀釋至刻度。一種外標的濃度應該小於或等於要求的定量限(以預處理方法中確定的最終體積內未稀釋的濃度為基礎)。其他校準溶液的濃度應當與真實試樣的預期濃度范圍相對應,或者由檢測器的工作范圍來定。

`注意:只要有可能,應當用污染取樣現場的特定燃料來配製校準溶液(例如,被懷疑已漏的油桶內殘余的燃料樣品)。如果這樣的樣品不易獲得或不知曉,則使用最近購買的商用燃料。定性篩選注射和GC分析也許能識別未知燃料。

用與實際試樣相同的氣相色譜導入技術導入每個校準溶液。計算每種類型燃料的校準因子(CF):

CF=保留時間范圍內的總面積/化合物注入質量(ng)

4)校準線性。在整個工作范圍內,如果校準因子的相對標准偏差(RSD,%)小於20%,此有機物的線性可以被採取,而且可以用平均校準因子取代校準曲線。

在整個工作范圍內,RSD(%)如果大於20%,此有機物的線性就不能被採用。可使用非線性等其他校準選擇。

保留時間窗口。單一組分目標分析物以保留時間窗口為基礎鑒別。DROs和GROs以每個類型燃料中的特徵組分的保留時間范圍為基礎進行鑒別。

在建立保留時間窗口之前,一定要確定色譜系統的功能是可靠的;並且已經對被分析的試樣混合物中的目標分析物和替代物的操作參數進行了優化。

在初始校準中已定義了GROs的保留時間范圍。兩個特殊的汽油組分(2-甲基戊烷和1,2,4-三甲基苯)可以用來建立這個范圍。保留時間范圍的計算基礎為:保留時間窗口最低限為第一個流出組分,保留時間窗口最高限為最後一個流出組分。

在初始校準中已定義了DROs的保留時間范圍。此范圍的建立基礎為C10和C28烷烴的保留時間。保留時間范圍的計算基礎為:保留時間窗口最低限為第一個流出組分,保留時間窗口最高限為最後一個流出組分。

5)校準持續確認。校準曲線和保留時間必須在每12h換班開始時檢驗,這是最低要求。當單一的目標分析物被分析時,檢驗可以通過測量含有所有目標分析物和替代物的一個或多個校準溶液(通常是中間濃度的)來完成。當石油烴被分析時,檢驗可以通過測量燃料標准和烴的保留時間標准來完成。強烈建議12h內不斷追加分析檢驗標准溶液,尤其對於含有可見濃度浸油物質的試樣。

如果對於任何分析物的響應值與初始校準所獲得的響應值相差在±15%以內,則初始校準被認為是有效的,可以繼續將初始校準所測得的CF值或RF值用於試樣定量(若分析時使用共沸蒸餾作為試樣導入技術,D可達±20%)。如果分析物的響應值與初始響應值相差±15%以上(共沸蒸餾為±20%),必須採取校正措施重新恢復系統或者針對此化合物繪制新校準曲線。

在校準檢驗分析中,所有目標分析物和替代物或正構烷烴都應當符合先前已測定的保留時間窗口。如果任何分析物的保留時間不在±3σ窗口之內,必須採用重建系統的校正行為或者針對此化合物准備新的校準曲線。

溶劑空白和任何方法空白應當在校準檢驗分析時運行,以驗證實驗室污染沒有造成假陽性。

6)氣相色譜分析。試樣分析順序,以校準檢驗開始,接著是試樣提取分析。強烈推薦12h內不斷追加分析檢驗標樣,尤其是含有可見濃度浸油物質的試樣。在一批分析結束時再分析一個檢驗標樣。當一批試樣已被注射入氣譜或者當保留時間或D(%)質量控制標准超標,順序結束。如果標准超標,在重新標定和進行試樣分析之前,檢查氣相色譜系統。所有採用外標校準的分析必須包括數據質量分析(例如,校準和保留時間校準)。所有超過質控標準的標樣濃度和超過校準曲線范圍的試樣都必須重新分析。

試樣分析與校準使用的儀器條件應相同。當將吹掃捕集試樣導入時,打開樣品小瓶或從封閉的小瓶中取出一部分試樣(於是產生頂空)都將危及易揮發試樣的分析。因此,推薦准備兩個平行試樣進行吹掃捕集分析。如果第一個試樣的分析不成功或者結果超過了方法校準范圍,第二個試樣可以安全貯存24h用來重新分析或稀釋。共沸蒸餾所得的分餾物可分成兩部分並且在分析前將其共置於4℃環境中。推薦在蒸餾24h內分析蒸餾液(最長不超過7d)。

如果試樣響應超過初始校準濃度范圍,必須分析稀釋的試樣。對於含有易揮發有機物的水樣,用來稀釋的必須是試樣的備份,即已密封和貯存准備使用和再分析的試樣。稀釋萃取液使所有的峰處於合適的尺寸,因為當色譜峰不合尺寸時重疊峰可能不很明顯。為保證超過100倍范圍的所有峰值都在合適的尺寸范圍內,計算機對色譜峰進行處理,重新給出色譜圖。只要未超過校準限定都可操作。當重疊峰導致峰面積積分錯誤時,推薦測量峰高而不用峰面積積分。

當試樣萃取物中的一個峰落入每日保留時間窗口時,單一組分分析可被暫時辨認。需要用第二根色譜柱或GC/MS證實。由於火焰離子化檢測器是非選擇性的,所以強烈推薦使用GC/MS定性單一組分分析物,除非可獲得支持定性的歷史數據。

對於石油烴分析,一般不需要第二根色譜柱證實。然而,如果分析有干擾,則要求使用第二根GC柱分析確認,也要確認樣品烴落在初始校準所建立的保留時間范圍內。

注意:燃料尤其是汽油,由於它們固有的揮發性致使鑒定是復雜的。燃料的早期洗提化合物顯現出很強的揮發性,取樣後若不馬上用塞子塞住,極易風蝕。在汽油的色譜圖中,汽油極易揮發的部分組成了50%的重要峰面積。這一小部分很少能在環境樣品或低濃度的有關汽油殘余物色譜圖中顯現。

每12h通過復測空白、標准和重份試樣以檢查全分析系統的狀態。需校正嚴重的拖尾峰,峰拖尾問題經常由色譜柱的活性部位、氣相色譜的冷部位、檢測器的操作或者系統的泄露導致。

7)計算。試樣中每個分析物的濃度可通過吹掃或注射標準的量計算。標準的量可以用校準曲線或從初始曲線獲得的CF或RF得到色譜峰的響應值計算。

盡管汽油和柴油含有的多種混合物能在GC/FID色譜圖中有較好的解析度,但兩種燃料都含有太多其他組分,這些組分不能被色譜分辨。這些未分辨的復雜混合物導致色譜圖中的「巔峰值」,形成了這些燃料的特徵。另外,盡管分離的色譜峰在定性特定的燃料類型時很重要,但未分離的色譜峰的峰面積可能占總響應面積的大部分。

為了分析DROs,將C10和C28的所有峰面積加和。這個面積由C10和C28保留時間范圍內所有基線凸起部分構成。

分析DROs使用的氣相色譜條件會導致嚴重的柱流失,同時導致基線上升,所以應該在測DROs氣相色譜圖的面積時適當的減去柱流失。在分析試樣中的DROs時,每12h換班時分析二氯甲烷空白,用測定試樣的方式測量該色譜圖峰面積。先通過DROs保留時間的范圍制定水平的基線,然後將該面積值從已測量的試樣面積中減去,所得面積之差按下式計算出DROs的濃度。

a.外標法校準-線性校準模型:

岩石礦物分析第四分冊資源與環境調查分析技術

式中:ρS為試樣中目標分析物的濃度,μg/L或ng/mL;AS為試樣中分析物的峰面積(或峰高);Vt為試樣濃縮液的總體積(μL),吹掃-捕集法分析中不存在Vt值,因此設定為1;CF為為初始校準的校準因子,每ng的面積值(或峰高);D為試樣或試樣提取液分析前的稀釋因子,試樣品沒有稀釋時D=1,量綱為一;Vi為提取液進樣體積(μL),通常水樣和校準標准品的進樣體積應該相同,對於吹掃-捕集分析法不存在Vi,因此取值為1;如果計算校準因子時使用了濃度單位,則在此方程式中不使用Vi;VS為水樣或吹掃體積,mL。

如果使用吹掃-捕集方法,樣品的甲醇提取液加入到了水中進行測定。

如果使用不通過原點的線性校準,可以用最小二乘法做線性回歸,得到回歸方程。根據面積響應值(y)、斜率(a)和截距(b)計算測定溶液中分析物的濃度,然後換算為原樣中的濃度。

對於吹掃-捕集分析法,若吹掃進樣前未對試樣進行稀釋,則進入系統的樣品中分析物的濃度與原始濃度相同。

b.內標法校準-線性校準。水樣中每個分析物的濃度按下式計算:

岩石礦物分析第四分冊資源與環境調查分析技術

式中:ρS為試樣中目標分析物的濃度,μg/L或ng/mL;ρiS為測定液中內標物的濃度,μg/L或ng/mL;AS為試樣中分析物的峰面積(或峰高);AiS為內標物的峰面積(或峰高);Vt為試樣濃縮液的總體積(μL),吹掃-捕集法分析中不存在Vt值,因此設定為1;CF為為初始校準的校準因子,每ng的面積值(或峰高);D為試樣或試樣提取液分析前的稀釋因子,如果試樣品沒有稀釋,D=1,量綱為一;Vi為提取液進樣體積(μL),通常試樣和校準標準的進樣體積相同,對於吹掃-捕集法不存在Vi,故取值為1;如果計算校準因子時使用了濃度單位,則在此方程式中不使用Vi;RF為初始校準的平均響應因子,與外標法的校準因子不同,響應因子量綱為一;VS為水樣或吹掃體積,mL。

c.非線性校準曲線的計算。當使用非線性曲線校準時,非線性方程必須變形後,求解提取液或吹掃體積中分析物濃度,然後將提取液中分析物濃度換算成試樣中分析物的濃度。

為了分析DROs,將分布在2-甲基戊烷和1,2,4-三甲基苯之間所有的峰面值相加,使用上述方程式計算GROs濃度。GROs分析中通常不需要減去柱流失。

計算公式涵蓋了外標校準和內標校準、直線校準曲線和非直線校準曲線。

8)篩選。為了減少GC/MS分析高度污染樣品造成的儀器停工期,可用本法的單點校準進行篩選。

與GC/MS連接的進樣設備配置同樣可用於GC/FID或其他配置。

建立起穩定的系統響應和穩定的色譜保留時間,分析GC/MS校準標準的最高點。

分析水樣或水樣萃取液時,當目標待測物濃度超過校準曲線高限時,且在相同保留時間沒有其他化合物流出,比較試樣和最高濃度標准中分析物的峰高,計算試樣中分析物的濃度。然而與GC/MS系統相比,FID對鹵化物反應不太靈敏,因此上述比較方法並不絕對正確。

為了確定儀器響應和氣相色譜保留時間的穩定性,最高點標准應該最少每隔12h分析一次,但是對於篩選不要求做質量檢測。

9)儀器維護。注入廢棄物試樣的萃取液通常會在注射口區域、分流器(分流進樣時)和色譜柱頭留有高沸點的剩餘物,該剩餘物影響一些氣相色譜分析性能(例如,殘余物峰值、保留時間變化、分析物降解等),因此儀器維護非常重要。分流器中殘余物累積可能迫使氣流拐彎,由此改變分流比。如果這種情況在分析時發生,定量數據有可能不準確。適當的清理技術使問題最小化,質量檢測設備將顯示何時需要儀器維護。

推薦氣相色譜儀維護。

分流裝置的連接:連接雙柱可使用壓力適應Y形的玻璃分流裝置或者是Y形熔凝石英的連接器,清潔並將分流裝置脫活或更換用潔凈脫活的分流器。切除柱子靠近進樣口一端的幾英寸(最多1英尺)。根據生產商的說明,拆下柱子和用溶劑反向沖洗進樣口。如果這些步驟不能消除降解問題,有必要對進樣口金屬主體進行脫活處理或更換柱子。

柱子沖洗:柱子應該用幾倍柱體積的適當溶劑沖洗。極性和非極性溶劑都可使用,根據樣品殘余物的性質決定,第一次用水沖洗,接著用甲醇和丙酮,最後用二氯甲烷沖洗。有時只用二氯甲烷沖洗。為了使固定相中的試樣殘留物轉入溶劑,柱子內應該注滿二氯甲烷,保持過夜;然後用新鮮的二氯甲烷沖洗柱子,再排干,室溫下用超純的氮氣流乾燥柱子。

質量控制

在每批試樣分析過程中都應包括方法空白、基質添加、重復樣和質量控制樣。

如果估計試樣中含有目標分析物,要使用一個基質添加樣和一個未添加基質的實際試樣重復分析。若估計試樣中不含有目標分析物,則應使用一個基質添加樣和一個基質添加重復樣。

分析每批試樣時,都應分析一個實驗室質量控制樣(LCS)。LCS含有相似於試樣的基質成分,與試樣基質具有相同質量或體積。該LCS用相同的待測化合物、同樣濃度添加作為基質添加樣。當添加基質分析結果顯示潛在的問題由試樣基質本身產生時,LCS結果可用來校驗實驗室用的清潔基質的分析結果。

應評價每個試樣中的替代物回收率。

方法性能

水基質中使用共沸蒸餾的揮發性有機物方法檢出限見表82.56。

表82.56 共沸蒸餾提取水樣中揮發性有機物的方法檢出限

續表

色譜圖見圖82.20~圖82.24。

圖82.20 300×10-6汽油標准色譜圖

圖82.21 30×10-6柴油標准色譜圖

圖82.22 30×10-6柴油標准色譜圖在C10~C18之間的基線

圖82.23 使用共沸蒸餾法提取試劑水中揮發性化合物色譜圖(混合物1)

圖82.24 使用共沸蒸餾法提取試劑水中揮發性化合物色譜圖(混合物2)

注意事項

1)當分析揮發性有機物時,樣品在運輸和貯存過程中可能被穿過容器隔膜的外界揮發性有機物(尤其是含氯氟烴和二氯甲烷)污染。准備一份純水作空白樣品,使其經過取樣和後續的貯存和處理操作過程,用以監測樣品污染。

2)高濃度和低濃度試樣的連續分析可能導致高濃度試樣的殘余物對後續低濃度試樣的污染。為了降低這種污染,在分析不同試樣時必須先用適當的溶劑將進樣針或吹掃裝置洗凈。分析非常規濃度的試樣後都應分析溶劑空白,以防止儀器中殘留的試樣污染後續試樣。

3) 清洗器皿時,先用洗滌液洗滌,再用蒸餾水沖洗,接著放置於 105℃ 的烘箱中烘烤。清洗進樣針或自動進樣器時,用適當的溶劑沖洗沾有試樣的表面即可。

所有的玻璃器皿都必須認真的清洗。玻璃器皿盡可能用完後立即用最後使用過的溶劑沖洗,接下來應當用含有洗滌劑的熱水洗滌,再用自來水和純水沖洗。最後晾乾玻璃器皿後放置於 130℃烘箱中烘幾小時,或用甲醇沖洗後晾乾,存放在清潔環境中。

4) 火焰離子化檢測器 (FID) 是非選擇性檢測器,可能存在很多干擾分析的非目標化合物。

參考文獻和參考資料

地下水質檢驗方法 (DZ/T 0064—1993) [S].1993.北京: 中國標准出版社

何淼,饒竹 .2008.圓盤固相萃取富集-氣相色譜法測定地表水中有機氯和有機磷農葯 [J].岩礦測試,27 (1) : 12-16

何淼,饒竹,蘇勁,黃毅 .2007.GDX -502 樹脂富集高效液相色譜法測定地表水中酚類化合物 [J].岩礦測試,26 (2) : 101 -104

黃毅,饒竹.2009.吹掃捕集氣相色譜-質譜法測定全國地下水調查樣品中揮發性有機污染物[J].岩礦測試,28 (1) : 15 -20

李松,饒竹,宋淑玲 .2008.全國地下水調查中 12 種半揮發性必檢組分的測定 [J].岩礦測試,27 (2) :91-94

李松,饒竹.2009.地下水中12 項半揮發性有機污染物測定的質量控制 [J].岩礦測試,28 (2) : 157 -160

劉風枝,劉瀟威 .2007.土壤和固體廢棄物監測分析技術 .北京: 化學工業出版社

饒竹,李松,佟柏齡,等 .2004.頂空氣相色譜法測定地層水中的苯系物 [J].岩礦測試,23 (2) :97-101

生活飲用水衛生標准 釋義 (GB 5749—2006) [M].2007.北京: 中國標准出版社

生活飲用水標准檢驗方法 微生物指標 (GB/T 5750.12—2006) [S].2007.北京: 中國標准出版社

生活飲用水標准檢驗方法 有機物綜合指標 (GB/T 5750.7—2006) [S].2007.北京: 中國標准出版社

生活飲用水標准檢驗方法 (GB/T 5750.10—2006) [S].2007.北京: 中國標准出版社

王若蘋 .2005.固相微萃取-毛細管氣相色譜法快速同步分析水中硝基苯類及氯苯類化合物 [J ].中國環境監測,21 (6) : 15 -19

魏復盛 .2002.水和廢水監測分析方法 第四版 .北京: 中國環境科學出版社

謝原利,吳瞻英,饒竹,等 .2008.氣相色譜/負化學電離質譜測定地下水中多氯聯苯 [J].水文地質地質工程地質,35 (增刊) : 301 -304

張蘭英,饒竹,劉麗娜 .2008.環境樣品前處理技術 〔M〕.北京: 清華大學出版社

US EPA Method 8015D,Nonhalogenated Organics Using GC /FID [S] .Revision 4 2003

US EPA Method 8081B,Organochlorine Pesticides by Gas Chromatography [S]

US EPA Method 8260C,Volatile Organic Compounds by Gas Chromatography /Mass Spectrometry (GC /MS) [S]

US EPA Method 8310,Polynuclear Aromatic Hydrocarbons [S]

本章編寫人: 耗氧量和生化需氧量測定,劉曉雯 (天津市地礦局測試中心) 。微生物等測定,田來生、齊繼祥(中國地質科學院水文地質環境地質研究所) ,有機污染物測定,饒竹 (國家地質實驗測試中心) 。