『壹』 微生物採油的採油微生物和油藏選擇
菌種篩選是微生物採油技術的關鍵。篩選MEOR菌種所遵循的原則,是所選擇的微生物應能適應油層環境條件。首先,所選菌種能在油藏條件下生存、運移並能產生大量對驅油有利的代謝產物;其次,從經濟角度出發,所選菌種能以原油為營養源。不同的生物工程目的所需的微生物代謝產物有所不同。MEOR菌種的選擇可參考表1[26]。
目前菌種篩選主要向兩方面發展[27],一是提高菌種耐溫性,以適合更廣的油藏范圍;二是只提供部分無機營養物,希望以原油為碳源,降低注入營養物成本。還有的篩選希望得到耐礦化度的菌種。目前已報道的菌種最高可適應85~95℃的油藏條件,耐礦化度高達17g/L[28],但此條件下活性如何尚無明確報道。大部分油田篩選和應用的菌種是烴類氧化菌系,可降解部分正構烷烴,對原油有一定降黏作用,適合30~60℃溫度[29];也有些工藝不需要篩選菌種,如內源微生物驅油[30]和活性污泥驅油。微生物種類鑒定比較復雜,僅少數油田對其使用的微生物進行了屬水平的鑒定和對環境的毒性鑒定。勝利油田初步建立了石油微生物菌種庫以及菌種資料庫,收錄了100多株菌種的微生物學特徵、性能參數和應用情況。 MEOR菌種既可以是好氧菌,也可以是厭氧菌。油藏處於缺氧狀態,而在油藏處理過程中不能保持絕對無氧狀態,故所用菌種最好為兼性厭氧菌。兼性厭氧菌的優勢還在於可以在好氧條件下培養,以縮短培養時間。好氧代謝比厭氧代謝快,先進行好氧培養,後進行厭氧培養,以加快篩選速度。另外,混合菌種可能具有協同作用,驅油效果優於單株菌。菌種的配伍性需通過模擬實驗確定。
菌種篩選步驟如下:含菌樣品 富集好氧培養 單株菌分離純化 穿刺接種 富集厭氧培養 室內初步模擬實驗 生化、代謝產物測試 物理模擬實驗 確定菌種組合。
穿刺接種的目的在於初步判斷菌種的需氧性,將好氧菌去除,以減輕下一步厭氧篩選的工作量。室內初步模擬實驗就是模擬目的油藏的環境條件,檢驗試驗菌能否在該油藏環境下生存[31]。 菌種性能評價對菌種進行性能評價的目的在於篩選有利於微生物採油的菌種。菌種性能研究菌種性能評價包括其生物學特徵、代謝產物分析、穩定性及對油藏環境的適應性,混合菌還需要進行菌株復配實驗[32]。一般用於評價的指標是:最大菌體濃度,表面張力降低幅度,培養液pH值及粘度的變化,產生氣體的量及組成,原油組成變化等。已報道的有以下3類評價方法。
分析原油被微生物發酵前後的變化
將微生物與原油共同培養後分離出原油,測試原油被發酵前後的變化,包括:①測試發酵前後的黏度、凝固點、含蠟量等物性變化。②用恩氏蒸餾法測試組分變化,發酵後輕餾分增加越多,說明微生物作用越好。③用色譜法分析正構烷烴組分變化,姥鮫烷/C17、植烷/C18比值反映原油流動性,發酵後其值上升說明原油流動性得到改善。不少實驗通過測定主峰碳的變化[29,33]或咔唑類化合物的變化來確認原油降解程度。④用色譜柱分離法分析各族組分相對含量變化,了解微生物對哪個族組分影響較大,多數實驗證明對正構烷烴有明顯影響,也有實驗證明對膠質、瀝青質有影響。
分析菌液的變化
在有原油存在的環境中培養微生物,測試菌液作用前後的酸度、界面張力變化以及產氣量[36]。對代謝產物中生物表面活性劑的分析研究較多,包括影響 其產生的因素、對原油的作用效果以及其成分等[37],但停留在單項成分的定性或定量分析。
岩心微生物驅油試驗
應用人造岩心或天然岩心建立微生物驅油的Lazar模型,一般試驗過程是:岩心飽和水、飽和油後水驅,水驅到含水98%或100%時注入一定量配製好的菌液,放入恆溫箱培養,測試從模型中排出的液體和氣體。另一種是高壓驅油模型,岩心培養之前先加壓,關閉岩心兩端閥門在高壓條件下培養一段時間,然後再水驅,測試採收率提高情況。岩心驅油試驗還用於研究微生物驅的相對滲透率變化[38] 、微生物用量或微生物段塞與採收率的關系。由於條件限制,多數油田最常測試的是微生物作用前後原油黏度變化。
目前國內在菌種評價方面忽視室內實驗條件與現場應用條件的不同,因此偏差較大。微生物本身和其代謝產物都受地層條件的影響,溫度、壓力、礦化度和岩性等因素的影響還存在一些未知的關系,需要通過室內實驗了解各自影響程度。建立完整可靠的評價方法是今後菌種性能評價重點攻關的內容之一。 微生物採油的方法及其優點微生物採油基本方法廣義地說主要包括兩大類:一類是利用微生物產品如生物聚合物和生物表面活性劑作為油田化學劑進行驅油,稱為微生物地上發酵提高採油率工藝,即生物工藝法,目前該技術在國內外已趨成熟;另一類是利勇微生物及其代謝產物提高採油率,主要是利用微生物地下發酵和利用油層中固有微生物的活動,稱為微生物地下發酵提高採收率方法 狹義地說微生物採油是指利用微生物地下發酵提高採收率方法。對與厚意種方法,油藏微生物生態問題長期注水開發油藏的地下應存在相對穩定的原地微生物生態系統。微生物採油過程中,注入的微生物與原地微生物能否兼容,注入的營養對原地微生物有什麼影響,這些問題還沒有認真研究。這些問題是微生物採油技術研究的重要組成部分,也可能成為該項技術發展的突破口。
3.2.1微生物採油的地層環境
各種EOR技術適用的油層條件有一定限制。MEOR也不例外,油層條件有一定限制。在此對現在的E
OR應用界限加以論述。
首先,油層岩質以砂岩或碳酸鹽岩為對象,它對微生物沒有影響[39]。以碳酸鹽岩為對象時,可以期待代謝所產生的酸性物質對碳酸鹽岩有溶解作用。還必須考慮粘土礦物等對菌體及營養物的吸附。MEOR微生物與營養源必須在岩石孔隙中移動,在油層中擴散。在pH與離子強度適當的條件下,粘土礦物使微生物在表面上吸附,阻礙微生物在孔隙中的移動和擴散。因此,採用目的油層的岩心,通過微生物滲透性測試進行探討是必要的。孔隙度與滲透率等因素對微生物的移動,增殖及代謝有影響。微生物的形態有球菌,桿菌,螺旋菌等,長0.5—10μm,寬0.5—2.0μm。細菌需要在目的油層中移動,一定程度的增殖空間是必要的,即某種程度的滲透率是必要的。據報道,細菌可在75×10-3μm2以下的岩心中運移,但通常適用下限為150×10-3μm2左右,在300×10-3μm2以上則更合適。
關於油層深度界限,其實是溫度及壓力界限,深度是受限制的[40]。微生物生長溫度上限,最近研究熱水礦場等所得到的超嗜熱菌為110℃,一般的好熱微生物為100℃左右。但是,適應超過70℃油層的事例,至今幾乎沒有報道。若以70℃為上限溫度,深度界限大約為8000英尺(2438.4m)。油藏中的地層水是微生物群體耐於生長和代謝的媒體,地層水的關鹽度,活度,pH以及地層水的溶解的物質對微生物群體的生長和代謝起著重要的作用,超過一定上限值而存在的有好鹽性、好酸性及好鹼性微生物,一般微生物難適應。以上所述的各種條件是目前水平下的限制,如果新發現特異功能微生物,有可能適應超過這些條件的更廣泛的油層[41]。
微生物採油技術的選井條件目前在國內普遍使用的微生物菌液的適用條件為[42]:①油層溫度<120℃;②地層水氯離子含量<10×104mg/L;③有毒離子含量(砷,汞,鎳,硒)<0~15mg/L;④油層滲透率>50×10-3μm2;⑤原油密度<0.900g/cm3;⑥殘余油飽和度>25%;⑦油藏含水率>5%。
3.2.2營養
對於微生物的營養問題涉及兩個方面,一個是微生物在注入油井前培養對應的培養基的營養成分,另一個是在井裡所需要添加的營養物質。
培養基的篩選雖然在礦場應用中細菌是以原油為營養物質生存繁殖的,但是用於礦場的菌液是在室內用特殊的營養物質精心培養出來的,這些營養物質通常稱為培養基,主要由有機物質和微量元素混合而成,不同的細菌所需要的培養基不一定相同,用不同的培養基培養同一種細菌,其具備的功能也可能不同,甚至會相差很大。要使一種培養基既能夠同時滿足多種微生物繁殖的要求,又能夠使它們在較短的時間里繁殖達到最大密度和具有最強的活性,並且使它們完全保持所需要的使用功能,是一項難度很大的研究工作[43]。
微生物菌種在地下需要一定量的營養物以維持其生長、繁殖和代謝。營養物主要是碳源、氮源、磷源,其中碳源為地層原油,無須補給;其他營養成分需要添加。通過不同類型營養劑篩選實驗,選出由銨鹽、磷酸鹽和生長因子等組成,並用礦場注入污水配製的營養溶液。由於地層水或注入水中含有微生物生長所需微量元素,不需要補充。所以地層狀況決定了所需要添加的營養物質[44]。配伍、分散原油等實驗結果表明,所選營養液與地層水(或污水)配伍性良好,菌的生長能力與油的乳化性也較好。
對注入地層的微生物所需的營養物質應當是在地層條件下具有熱穩定性和化學穩定性的,而且不會與地層液體中的無機鹽發生反應而沉澱,以免阻塞地層。另外,在含黏土的地層中,營養液應不至於引起地層黏土膨脹和微粒運移。為避免發生這些問題,確保工程成功,應利用地層水樣和岩樣進行相關這方面的室內實驗。
3.2.3化學劑
油田開發的各個環節基本上都要使用化學劑,只是目的不同,使用的化學劑種類不同,如鑽井、修井、完井,壓裂、堵水、調剖、固砂過程使用的化學劑,生產過程中使用的緩蝕、防垢、除垢、殺菌劑等油田注入水常用處理劑,油田開發後期化學法提高採收率技術使用的大量驅油劑。這些化學劑視濃度的不同對微生物產生不同程度的影響。相對而言,用量較大的化學劑如注入水處理劑和三次採油驅油劑的影響可能更大。
化學劑對微生物的影響主要有兩方面。一是化學劑對微生物細胞結構的影響,一些具有表面活性的物質可直接破壞細胞結構,使微生物死亡。二是化學劑與微生物細胞中某些生化物質結合,使其喪失原有的生化性能,不能正常生長代謝,最終導致死亡。無論是哪一種影響,都與化學劑濃度密切相關。只有化學劑濃度超過一定范圍,才能對微生物產生影響。如目前油田注入污水處理多用陽離子季銨鹽類以及其與氧化劑的復配物,一般加葯量在9~10mg/L,當細菌數高於102個/mL時,葯劑加量須加大2~3倍[45]才能控制細菌的生長。在實施聚合物驅的區塊常出現高細菌腐蝕速率現象[46],也是注入的驅油劑中聚丙烯醯胺和甲醛共同影響地層中細菌生長造成的。
當化學劑對微生物生長的抑製作用影響到微生物採油工藝的實施時,就必須消除這種抑製作用。要從根本上消除化學劑對微生物生長的抑製作用,必須從微生物菌種篩選及微生物育種著手。(1)在含有化學劑的地層水中,往往存在由於發生自發突變而能抵抗化學劑不利影響的微生物。可以從產出液中篩選這些微生物,經過二次篩選得到的採油用菌種既可以滿足微生物採油的需要又能抵抗化學劑的不利影響。(2)工業菌種的培育運用遺傳學原理和技術對某個用於特定生物技術目的的菌株進行多方位的改造,以增加新的性狀。通過微生物育種,可以獲得在不利化學劑存在條件下生長良好的採油菌種,從而消除化學劑對微生物採油的不利影響。用於工業菌種育種的方法主要有誘變和基因重組。
3.2.4本原微生物問題
長期注水開發油藏的地下應存在相對穩定的原地微生物生態系統。對原地微生物生態系統中可以劃分為兩類[47],一類是不利於油藏開採的細菌群落,系指消耗存在於海水中或存在於地層水或含水層水中組成能源鏈的硫基化合物,而又消耗存在於地層中作為細菌食物的單碳化合物的細菌群落。細菌生長所排泄出的廢物,包括硫化氫在內,不但對人有毒害,而且還會使管材和地面油罐等設施遭受腐蝕。還有些有害的微生物在井筒周圍(泥漿濾餅和地層中)生長和繁殖得很快,以致使岩石孔隙遭受堵塞,從而降低滲透率;但另有一些微生物卻能使所添加的因增產增注後失效的化學試劑分解,而延長井筒的壽命。另一類是有利於採油的微生物—有益的細菌群落,由於在其生長繁殖過程中,能產生諸如溶劑、酸類、氣體、表面活性劑和生物聚合物等有效化合物,因而可提高石油採收率。這些細菌及其副產物也就在油層中起到了有效的作用。為此,石油微生物學家都在試圖尋找既能使不利於採油的細菌得到抑制而又能促使有利於採油的細菌得到生長和繁殖的方法。
微生物採油過程中,注入的微生物與原地微生物能否兼容,注入的營養對原地微生物有什麼影響,這些問題還沒有認真研究。這些問題是微生物採油技術研究的重要組成部分,也可能成為該項技術發展的突破口。Yonebayashi[48]在進行境界試驗(Halo試驗)的同時,採用流體培養基的培養試驗到了如下3種結果。①B.subtilisRTC 4126與113菌,只出現競爭對手113菌落,被檢菌的增殖受到抑制。②E.CloacaeTU 7 A與113菌,雙方都出現菌落,但是沒有Halo形成,雙方互不影響。③B.licheniformisTRC 182A與118菌,被檢菌與競爭菌之間形成典型的境界,被檢菌抑制競爭菌。形成透明圈的主要原因,被認為是由於TRC182A所生成的表面活性劑造成了118菌的溶菌。在流體培養試驗結果的探討中,也得到了與境界試驗相同的3種類型。
由於本原微生物中本身存在有利於採油的菌種,所以如果利用好這些本原微生物,可以減少微生物菌體對油藏環境的不適應性和與本原微生物的不相容性。所以本原微生物採油技術成為一比較好的研究方向[49]。
由於微生物採油的地層環境對於微生物採油的這些影響,在進行微生物採油前應對油田進行調查。選擇礦場試驗油田時應了解油層溫度、滲透率、孔隙度、原油性質、儲層岩性、注水末期等因素的影響。選擇一定的注水井和生產井,採集油層水樣及注入水樣,對這些試樣中的微生物種類進行調查,同時採集注入裝置處理後的水進行同樣的分析作為參考並對存在於油層中的本源微生物進行調查。
值得一提的是,微生物的篩選與油藏微生物生態問題是密不可分的。一定的油藏微生物生態系統決定了微生物菌種的篩選,而已掌握微生物菌種的特性反過來決定了微生物採油的油井選擇。
『貳』 如果用石油來栽培植物會怎麼樣
植物無法吸收到營養,慢慢枯萎!
所以說,石油是不能栽培植物的。
『叄』 微生物的營養需求中碳源的功能為
微生物的營養需求中碳源的功能為給細胞提供能源。
用於構成微生物細胞和代謝產物中碳素來源的營養物質稱為碳源(carbon source)。微生物細胞中碳素含量約占干物質的50%。碳源是工業發酵培養基的主要成分之一,它既能構成菌體細胞和代謝產物,又能提供微生物生命活動中所需能量。
生產中使用的碳源有碳水化合物(糖類)、脂肪、有機酸、醇和碳氫化合物等。由於各種微生物生理特性不同,所含的碳源分解酶並不完全一致,所利用的碳源品種會存在差異。
碳源對微生物生長代謝的作用主要為提供細胞的碳架,提供細胞生命活動所需的能量,提供合成產物的碳架。碳源在製作微生物培養基或細胞培養基時有重要的作用,為微生物或細胞的正常生長,分裂提供物質基礎。
3.有機酸、醇
主要有乳酸、枸橡酸、延胡索酸、氨基酸、低級脂肪酸、高級脂肪酸、甲醇、乙醇、甘油等,用於單細胞蛋白(SCP)、氨基酸、維生素、麥角鹼和抗生素的發酵生產。乙醇在青黴素發酵中的應用取得了較好效果。
4.碳氫化合物
石油產品可以作為某些微生物發酵的碳源。石油產品在單細胞蛋白、氨基酸、核昔酸、有機酸、維生素、酶類、糖類、抗生素等發酵中均有研究。由於成本、市場、安全性等因素投入工業化生產的很少。
『肆』 為什麼要密封培養能降解石油的微生物
(1)在長期被石油污染的土壤中生存下來的微生物,能降解石油,所以土壤取樣時,應從含石油多的土壤中採集.
(2)篩選和純化該類微生物,應選用以石油作為微生物生長的唯一碳源的選擇培養基.
(3)該類微生物是厭氧微生物,接種後應密封培養;培養一段時間後在培養基上可形成降油圈,降油圈越大,說明該處的微生物降解石油的能力越強,所以應選擇降油圈大的菌落進行培養以獲得高效菌株.
故答案為:
(1)長期被石油污染(含石油多的)
(2)石油作為微生物生長的唯一碳源
(3)厭氧型 降油圈大的菌落
『伍』 如何用牛肉膏蛋白腖培養基篩選,分離一種能降解石油的細菌,你認為應如何做
石油的成分太復雜了。不過裡面大部分是有機成分,碳源氮源都有,如果篩選的話你應該可以選出來很多。因為不同的菌可能會利用石油裡面的不同物質。如果想篩選的話可以按照以下步驟。
配製固體培養基:成分為基本無機營養鹽,瓊脂(高級點的,裡面不能有雜質), 加一定濃度的滅過菌的石油。倒平板。這個平板上碳源氮源都只是石油,所以是選擇培養基。
取1mL石油,稀釋10,100,1000,10000倍,每種稀釋液取100uL塗平板。一個做三個重復,看看有沒有東西長出來。
有長出來的話,根據形態觀察,挑選不同的再分別繼續塗在平板上純化,分離。
補充:結果是你可能會得到非常多的細菌。。。先去網上搜一下已有的文獻吧,別直接動手。實驗設計比做實驗更重要。
『陸』 黃原膠是什麼
黃原膠是由黃單胞桿菌發酵產生的細胞外酸性雜多糖。黃原膠由D-葡萄糖、D-甘露糖和D-葡萄糖醛酸按2:2:1組成的多糖類高分子化合物,相對分子質量在100萬以上。黃原膠的二級結構是側鏈繞主鏈骨架反向纏繞,通過氫鍵維系形成棒狀雙螺旋結構。
黃原膠具有獨特的流變性,良好的水溶性、對熱及酸鹼的穩定性、與多種鹽類有很好的相容性,作為增稠劑、懸浮劑、乳化劑、穩定劑,可廣泛應用於食品、石油、醫葯等20多個行業,是目前世界上生產規模最大且用途極為廣泛的微生物多糖。
主要用途
黃原膠由於其獨特的性質,因而在食品、石油、醫葯、日用化工等十幾個領域有著極其廣泛的應用,其商品化程度之高,應用范圍之廣,令其他任何一種微生物多糖都望塵莫及。
1、食品方面:許多食品中都添加黃原膠作為穩定劑、乳化劑、懸浮劑、增稠劑和加工輔助劑。黃原膠可控制產品的流變性、結構、風味及外觀形態,其假塑性又可保證良好的口感。
2、日用化工方面:黃原膠分子中含有大量的親水基團,是一種良好的表面活性物質,並具有抗氧化、防止皮膚衰老等功效,因此,幾乎絕大多數高檔化妝品中都將黃原膠作為其主要功能成分。此外,黃原膠還可作為牙膏的成分實質增稠定型,降低牙齒表面磨損。
3、醫學方面:黃原膠是目前國際上炙手可熱的微膠囊葯物囊材中的功能組分,在控制葯物緩釋方面發揮重要作用;由於其自身的強親水性和保水性,還有許多具體醫療操作方面的應用。
4、工農業方面的應用:在石油工業中,由於其強假塑性,低濃度的黃原膠(0.5%)水溶液就可保持鑽井液的粘度並控制其流變性能,因而在高速轉動的鑽頭部位粘度極小,節省了動力;而在相對靜止的鑽孔部位卻保持高粘度,從而防止井壁坍塌。
(6)石油在培養基里提供什麼擴展閱讀
黃原膠來自於細菌
20世紀50年代,美國研究一種叫「野油菜黃單孢菌」的細菌,它對於甘藍、紫苜蓿來說是有害菌,可引起黑腐病。科學家意外發現它能將甘藍提取物轉化為黏稠的物質,這就是黃原膠。
黃原膠早年主要用於石油鑽探行業,僅有30%用於食品。進入20世紀70年代,其主要用途已轉向食品,占總產量的60%~70%。1969年,美國FDA率先批准黃原膠作為食品添加劑。1988年,我國也批准黃原膠列入食品添加劑。它的安全性非常高,因此可以根據需要用於各類食品中,一般無需限量。
增稠效果好 黃原膠的增稠效果技壓群芳。0.1%的黃原膠就能形成良好的增稠效果,而其他很多增稠劑在這個濃度根本沒有效果。在同等濃度下,黃原膠的黏度是明膠的100倍。它還可以和槐豆膠、瓜爾膠、魔芋粉等物質協同,增稠特性得到進一步強化。
黃原膠的用途還有很多,比如它被用於減肥食品。因為它是水溶性膳食纖維,可以提供一定的飽腹感,但由於人體消化酶無法破壞它,因此不會提供能量。此外,它可用於微膠囊技術,是生產緩釋葯物的重要組分。
總之,黃原膠在日用化工、食品、醫葯、石油開采、紡織、陶瓷及印染等領域都能大顯身手。恐怕當年發現它的科學家也沒想到,這個細菌的分泌物竟有如此神奇。