當前位置:首頁 » 資源管理 » 數據資源平台如何做
擴展閱讀
漢克狗怎麼獲得300鑽石 2024-11-15 13:17:31

數據資源平台如何做

發布時間: 2022-02-13 15:38:11

A. 設計一個大數據實時分析平台要怎麼做呢

PetaBase-V作為Vertica基於億信分析產品的定製版,提供面向大數據的實時分析服務,採用無共享大規模並行架構(MPP),可線性擴展集群的計算能力和數據處理容量,基於列式資料庫技術,使 PetaBase-V 擁有高性能、高擴展性、高壓縮率、高健壯性等特點,可完美解決報表計算慢和明細數據查詢等性能問題。
大數據實時分析平台(以下簡稱PB-S),旨在提供數據端到端實時處理能力(毫秒級/秒級/分鍾級延遲),可以對接多數據源進行實時數據抽取,可以為多數據應用場景提供實時數據消費。作為現代數倉的一部分,PB-S可以支持實時化、虛擬化、平民化、協作化等能力,讓實時數據應用開發門檻更低、迭代更快、質量更好、運行更穩、運維更簡、能力更強。
整體設計思想
我們針對用戶需求的四個層面進行了統一化抽象:
統一數據採集平台
統一流式處理平台
統一計算服務平台
統一數據可視化平台
同時,也對存儲層保持了開放的原則,意味著用戶可以選擇不同的存儲層以滿足具體項目的需要,而又不破壞整體架構設計,用戶甚至可以在Pipeline中同時選擇多個異構存儲提供支持。下面分別對四個抽象層進行解讀。
1)統一數據採集平台
統一數據採集平台,既可以支持不同數據源的全量抽取,也可以支持增強抽取。其中對於業務資料庫的增量抽取會選擇讀取資料庫日誌,以減少對業務庫的讀取壓力。平台還可以對抽取的數據進行統一處理,然後以統一格式發布到數據匯流排上。這里我們選擇一種自定義的標准化統一消息格式UMS(Unified Message Schema)做為 統一數據採集平台和統一流式處理平台之間的數據層面協議。
UMS自帶Namespace信息和Schema信息,這是一種自定位自解釋消息協議格式,這樣做的好處是:
整個架構無需依賴外部元數據管理平台;
消息和物理媒介解耦(這里物理媒介指如Kafka的Topic, Spark Streaming的Stream等),因此可以通過物理媒介支持多消息流並行,和消息流的自由漂移。
平台也支持多租戶體系,和配置化簡單處理清洗能力。
2)統一流式處理平台
統一流式處理平台,會消費來自數據匯流排上的消息,可以支持UMS協議消息,也可以支持普通JSON格式消息。同時,平台還支持以下能力:
支持可視化/配置化/SQL化方式降低流式邏輯開發/部署/管理門檻
支持配置化方式冪等落入多個異構目標庫以確保數據的最終一致性
支持多租戶體系,做到項目級的計算資源/表資源/用戶資源等隔離
3)統一計算服務平台
統一計算服務平台,是一種數據虛擬化/數據聯邦的實現。平台對內支持多異構數據源的下推計算和拉取混算,也支持對外的統一服務介面(JDBC/REST)和統一查詢語言(SQL)。由於平台可以統一收口服務,因此可以基於平台打造統一元數據管理/數據質量管理/數據安全審計/數據安全策略等模塊。平台也支持多租戶體系。
4)統一數據可視化平台
統一數據可視化平台,加上多租戶和完善的用戶體系/許可權體系,可以支持跨部門數據從業人員的分工協作能力,讓用戶在可視化環境下,通過緊密合作的方式,更能發揮各自所長來完成數據平台最後十公里的應用。
以上是基於整體模塊架構之上,進行了統一抽象設計,並開放存儲選項以提高靈活性和需求適配性。這樣的RTDP平台設計,體現了現代數倉的實時化/虛擬化/平民化/協作化等能力,並且覆蓋了端到端的OLPP數據流轉鏈路。
具體問題和解決思路
下面我們會基於PB-S的整體架構設計,分別從不同維度討論這個設計需要面對的問題考量和解決思路。
功能考量主要討論這樣一個問題:實時Pipeline能否處理所有ETL復雜邏輯?
我們知道,對於Storm/Flink這樣的流式計算引擎,是按每條處理的;對於Spark Streaming流式計算引擎,按每個mini-batch處理;而對於離線跑批任務來說,是按每天數據進行處理的。因此處理范圍是數據的一個維度(范圍維度)。
另外,流式處理面向的是增量數據,如果數據源來自關系型資料庫,那麼增量數據往往指的是增量變更數據(增刪改,revision);相對的批量處理面向的則是快照數據(snapshot)。因此展現形式是數據的另一個維度(變更維度)。
單條數據的變更維度,是可以投射收斂成單條快照的,因此變更維度可以收斂成范圍維度。所以流式處理和批量處理的本質區別在於,面對的數據范圍維度的不同,流式處理單位為「有限范圍」,批量處理單位為「全表范圍」。「全表范圍」數據是可以支持各種SQL運算元的,而「有限范圍」數據只能支持部分SQL運算元。
復雜的ETL並不是單一運算元,經常會是由多個運算元組合而成,由上可以看出單純的流式處理並不能很好的支持所有ETL復雜邏輯。那麼如何在實時Pipeline中支持更多復雜的ETL運算元,並且保持時效性?這就需要「有限范圍」和「全表范圍」處理的相互轉換能力。
設想一下:流式處理平台可以支持流上適合的處理,然後實時落不同的異構庫,計算服務平台可以定時批量混算多源異構庫(時間設定可以是每隔幾分鍾或更短),並將每批計算結果發送到數據匯流排上繼續流轉,這樣流式處理平台和計算服務平台就形成了計算閉環,各自做擅長的運算元處理,數據在不同頻率觸發流轉過程中進行各種運算元轉換,這樣的架構模式理論上即可支持所有ETL復雜邏輯。
2)質量考量
上面的介紹也引出了兩個主流實時數據處理架構:Lambda架構和Kappa架構,具體兩個架構的介紹網上有很多資料,這里不再贅述。Lambda架構和Kappa架構各有其優劣勢,但都支持數據的最終一致性,從某種程度上確保了數據質量,如何在Lambda架構和Kappa架構中取長補短,形成某種融合架構,這個話題會在其他文章中詳細探討。
當然數據質量也是個非常大的話題,只支持重跑和回灌並不能完全解決所有數據質量問題,只是從技術架構層面給出了補數據的工程方案。關於大數據數據質量問題,我們也會起一個新的話題討論。
3)穩定考量
這個話題涉及但不限於以下幾點,這里簡單給出應對的思路:
高可用HA
整個實時Pipeline鏈路都應該選取高可用組件,確保理論上整體高可用;在數據關鍵鏈路上支持數據備份和重演機制;在業務關鍵鏈路上支持雙跑融合機制
SLA保障
在確保集群和實時Pipeline高可用的前提下,支持動態擴容和數據處理流程自動漂移
彈性反脆弱
? 基於規則和演算法的資源彈性伸縮
? 支持事件觸發動作引擎的失效處理
監控預警
集群設施層面,物理管道層面,數據邏輯層面的多方面監控預警能力
自動運維
能夠捕捉並存檔缺失數據和處理異常,並具備定期自動重試機制修復問題數據
上游元數據變更抗性
?上游業務庫要求兼容性元數據變更
? 實時Pipeline處理顯式欄位
4)成本考量
這個話題涉及但不限於以下幾點,這里簡單給出應對的思路:
人力成本
通過支持數據應用平民化降低人才人力成本
資源成本
通過支持動態資源利用降低靜態資源佔用造成的資源浪費
運維成本
通過支持自動運維/高可用/彈性反脆弱等機制降低運維成本
試錯成本
通過支持敏捷開發/快速迭代降低試錯成本
5)敏捷考量
敏捷大數據是一整套理論體系和方法學,在前文已有所描述,從數據使用角度來看,敏捷考量意味著:配置化,SQL化,平民化。
6)管理考量
數據管理也是一個非常大的話題,這里我們會重點關注兩個方面:元數據管理和數據安全管理。如果在現代數倉多數據存儲選型的環境下統一管理元數據和數據安全,是一個非常有挑戰的話題,我們會在實時Pipeline上各個環節平台分別考慮這兩個方面問題並給出內置支持,同時也可以支持對接外部統一的元數據管理平台和統一數據安全策略。
以上是我們探討的大數據實時分析平台PB-S的設計方案。

B. 大數據平台是什麼什麼時候需要大數據平台如何建立大數據平台

首先我們要了解Java語言和Linux操作系統,這兩個是學習大數據的基礎,學習的順序不分前後。

Java :只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據基礎。

Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。

Hadoop:這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

C. 搭建大數據平台的具體步驟是什麼

1、操作體系的挑選


操作體系一般使用開源版的RedHat、Centos或許Debian作為底層的構建渠道,要根據大數據渠道所要建立的數據剖析東西能夠支撐的體系,正確的挑選操作體系的版本。


2、建立Hadoop集群


Hadoop作為一個開發和運行處理大規模數據的軟體渠道,實現了在大量的廉價計算機組成的集群中對海量數據進行分布式計算。Hadoop結構中最核心的規劃是HDFS和MapRece,HDFS是一個高度容錯性的體系,合適布置在廉價的機器上,能夠供給高吞吐量的數據訪問,適用於那些有著超大數據集的應用程序;MapRece是一套能夠從海量的數據中提取數據最終回來成果集的編程模型。在生產實踐應用中,Hadoop非常合適應用於大數據存儲和大數據的剖析應用,合適服務於幾千台到幾萬台大的伺服器的集群運行,支撐PB級別的存儲容量。


3、挑選數據接入和預處理東西


面臨各種來源的數據,數據接入便是將這些零散的數據整合在一起,歸納起來進行剖析。數據接入首要包括文件日誌的接入、資料庫日誌的接入、關系型資料庫的接入和應用程序等的接入,數據接入常用的東西有Flume,Logstash,NDC(網易數據運河體系),sqoop等。


4、數據存儲


除了Hadoop中已廣泛應用於數據存儲的HDFS,常用的還有分布式、面向列的開源資料庫Hbase,HBase是一種key/value體系,布置在HDFS上,與Hadoop一樣,HBase的目標首要是依靠橫向擴展,通過不斷的添加廉價的商用伺服器,添加計算和存儲才能。同時hadoop的資源管理器Yarn,能夠為上層應用供給統一的資源管理和調度,為集群在利用率、資源統一等方面帶來巨大的優點。


5、挑選數據挖掘東西


Hive能夠將結構化的數據映射為一張資料庫表,並供給HQL的查詢功能,它是建立在Hadoop之上的數據倉庫根底架構,是為了削減MapRece編寫工作的批處理體系,它的出現能夠讓那些通曉SQL技術、可是不熟悉MapRece、編程才能較弱和不擅長Java的用戶能夠在HDFS大規模數據集上很好的利用SQL言語查詢、匯總、剖析數據。


6、數據的可視化以及輸出API


關於處理得到的數據能夠對接主流的BI體系,比如國外的Tableau、Qlikview、PowrerBI等,國內的SmallBI和新興的網易有數(可免費試用)等,將成果進行可視化,用於決策剖析;或許迴流到線上,支撐線上業務的開展。

D. 怎麼搭建大數據分析平台

數據分析平台就是將公司所有的數據進行進行收集整理,包括系統數據、業務數據等,在統一的數據框架下實現對數據的挖掘和分析,最後通過可視化的手段進行數據展示。

1、通常來說,企業內部的運營和業務系統每天會積累下大量歷史數據,一些企業最多是對一些零散的數據進行淺層次的分析,真正的海量數據其實並沒有得到真正有效的分析利用。

2、同時,隨著系統的不斷增加和積累,沉澱在系統深處的數據也更加難以提取和整合,後期的報表展示和可視化分析也就成了空殼應用。

3、一方面它可以匯通企業的各個業務系統,從源頭打通數據資源,另一方面也可以實現從數據提取、集成到數據清洗、加工、可視化的一站式分析,幫助企業真正從數據中提取價值,提高企業的經營能力。

搭建大數據分析平台可以到思邁特軟體Smartbi了解一下,它在金融行業,全球財富500強的10家國內銀行中,有8家選用了思邁特軟體Smartbi;國內12家股份制銀行,已覆蓋8家;國內六大銀行,已簽約4家;國內排名前十的保險公司已經覆蓋6家;國內排名前十的證券公司已經覆蓋5家。

數據分析平台靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。

思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台

E. 大數據平台需要具備哪些能力

集群監控與管理


毫無疑問集群是需要能夠進行統籌的管理及監控的能力,否則運維團隊在做運維時將無從下手。


資源接入


數據是一個企業的核心資源,我們對業務模型的建立,分析,挖掘都需要建立在原始數據之上,而這些數據來源多(日誌,關系資料庫,爬蟲等),類型雜(結構化,半結構化,非結構化數據),體量大,所以大數據平台需要能夠對接各種來源及各種類型的海量數據。


數據存儲及查詢


數據接入之後,就需要根據不同的應用場景進行存儲,例如關系型數據模型,非關系型數據模型,文檔數據模型,大數據平台需要能夠提供不同的存儲模型及不同的查詢手段。


數據計算


根據不同的應用場景會有不同的計算要求,簡單的可以分為離線計算和實時計算,機器學習,多維分析。在數據對時效性要求不高且數據量大的情況下可以選擇離線計算。


關於大數據平台需要具備哪些能力,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

F. 企業的大數據分析平台應該如何構建

搭建大數據分析平台,看清重點,是搭建分析平台,其次分析的事數據。如果想完成這件事情,主要有4個方面:

①確認數據分析方向。比如是分析社交數據,還是電商數據,亦或者是視頻數據,或者搜索數據。

②確認數據來源。比如來自騰訊,來自網路,來自阿里巴巴,來自實體店。

③數據分析師,去分析你獲取的數據。

④擁有需要數據分析結果的客戶。沒有客戶,你是不可能存在的,因為你沒有活下去的可能性,你沒有錢,一切就白搭了。

那麼如何設計符合企業實情並能解決實際問題的數據分析平台呢?

1. 平台建設主導人需要對每一塊業務需求有深刻的了解,知道每個業務部門想要看什麼樣的數據,需要什麼樣的分析報表;這些數據是否現在就可以獲取到,是否需要收集;業務部門通過這些數據分析,是如何推進和改善業務,是否有提升的價值意義。

2. 平台的設計需要根據業務的要求設計符合使用者需要的內容,產品要有層級和結構。因為領導和業務人員的關注點不一樣,看數據的視角也不一樣。領導往往需要一些能幫助把握大方向的關鍵指標,並且希望知道這些指標之後的問題是什麼?原因是什麼?所以給領導設計的報表需要直觀易懂,並且能夠基於這些指標的一場定位到問題。而業務人員更在乎業務的執行,關注的數據往往粒度很細,需要知道各項指標的明細。

3. 數據平台一定要注意數據質量、規范、統一。因為數據分析平台是面向所有業務的,怎麼保證公司的所有部門人員對於數據的理解是一致的,這點特別難。平台的數據質量依賴於數據倉庫底層的數據模型,所以一個好的數據倉庫很大程度上決定了數據分析平台的數據質量。

4. 工具選型上,有報表平台、BI。報表平台適合構建基礎的規范化的數據分析平台,從明細報表(表格類)的,項目檔案,文件報備,數據填報,數據報表,業務主題分析,文中的所有demo就是用FineReport製作,側重於展示和報表管理。大數據分析的工具選型可以參考成都加米穀大數據培訓機構的技術分享文章。

G. 如何創建一個大數據平台

所謂的大數據平台不是獨立存在的,比如網路是依賴搜索引擎獲得大數據並開展業務的,阿里是通過電子商務交易獲得大數據並開展業務的,騰訊是通過社交獲得大數據並開始業務的,所以說大數據平台不是獨立存在的,重點是如何搜集和沉澱數據,如何分析數據並挖掘數據的價值。

我可能還不夠資格回答這個問題,沒有經歷過一個公司大數據平台從無到有到復雜的過程。不過說說看法吧,也算是梳理一下想法找找噴。
這是個需求驅動的過程。
曾經聽過spotify的分享,印象很深的是,他們分享說,他們的hadoop集群第一次故障是因為,機器放在靠窗的地方,太陽曬了當機了(笑)。從簡單的沒有機房放在自家窗前的集群到一直到現在復雜的數據平台,這是一個不斷演進的過程。
對小公司來說,大概自己找一兩台機器架個集群算算,也算是大數據平台了。在初創階段,數據量會很小,不需要多大的規模。這時候組件選擇也很隨意,Hadoop一套,任務調度用腳本或者輕量的框架比如luigi之類的,數據分析可能hive還不如導入RMDB快。監控和部署也許都沒時間整理,用腳本或者輕量的監控,大約是沒有ganglia、nagios,puppet什麼的。這個階段也許算是技術積累,用傳統手段還是真大數據平台都是兩可的事情,但是為了今後的擴展性,這時候上Hadoop也許是不錯的選擇。
當進入高速發展期,也許擴容會跟不上計劃,不少公司可能會遷移平台到雲上,比如AWS阿里雲什麼的。小規模高速發展的平台,這種方式應該是經濟實惠的,省了運維和管理的成本,擴容比較省心。要解決的是選擇平台本身提供的服務,計算成本,打通數據出入的通道。整個數據平台本身如果走這條路,可能就已經基本成型了。走這條路的比較有名的應該是netflix。
也有一個階段,你發現雲服務的費用太高,雖然省了你很多事,但是花錢嗖嗖的。幾個老闆一合計,再玩下去下個月工資發布出來了。然後無奈之下公司開始往私有集群遷移。這時候你大概需要一群靠譜的運維,幫你監管機器,之前兩三台機器登錄上去看看狀態換個磁碟什麼的也許就不可能了,你面對的是成百上千台主機,有些關鍵服務必須保證穩定,有些是數據節點,磁碟三天兩頭損耗,網路可能被壓得不堪重負。你需要一個靠譜的人設計網路布局,設計運維規范,架設監控,值班團隊走起7*24小時隨時准備出台。然後上面再有平台組真的大數據平台走起。
然後是選型,如果有技術實力,可以直接用社區的一整套,自己管起來,監控部署什麼的自己走起。這個階段部署監控和用戶管理什麼的都不可能像兩三個節點那樣人肉搞了,配置管理,部署管理都需要專門的平台和組件;定期Review用戶的作業和使用情況,決定是否擴容,清理數據等等。否則等機器和業務進一步增加,團隊可能會死的很慘,疲於奔命,每天事故不斷,進入惡性循環。
當然有金錢實力的大戶可以找Cloudera,Hortonworks,國內可以找華為星環,會省不少事,適合非互聯網土豪。當然互聯網公司也有用這些東西的,比如Ebay。
接下去你可能需要一些重量的組件幫你做一些事情。
比如你的數據接入,之前可能找個定時腳本或者爬log發包找個伺服器接收寫入HDFS,現在可能不行了,這些大概沒有高性能,沒有異常保障,你需要更強壯的解決方案,比如Flume之類的。
你的業務不斷壯大,老闆需要看的報表越來越多,需要訓練的數據也需要清洗,你就需要任務調度,比如oozie或者azkaban之類的,這些系統幫你管理關鍵任務的調度和監控。
數據分析人員的數據大概可能漸漸從RDBMS搬遷到集群了,因為傳統資料庫已經完全hold不住了,但他們不會寫代碼,所以你上馬了Hive。然後很多用戶用了Hive覺得太慢,你就又上馬交互分析系統,比如Presto,Impala或者SparkSQL。
你的數據科學家需要寫ML代碼,他們跟你說你需要Mahout或者Spark MLLib,於是你也部署了這些。
至此可能數據平台已經是工程師的日常工作場所了,大多數業務都會遷移過來。這時候你可能面臨很多不同的問題。
比如各個業務線數據各種數據表多的一塌糊塗,不管是你還是寫數據的人大概都不知道數據從哪兒來,接下去到哪兒去。你就自己搞了一套元數據管理的系統。
你分析性能,發現你們的數據都是上百Column,各種復雜的Query,裸存的Text格式即便壓縮了也還是慢的要死,於是你主推用戶都使用列存,Parquet,ORC之類的。
又或者你發現你們的ETL很長,中間生成好多臨時數據,於是你下狠心把pipeline改寫成Spark了。
再接下來也許你會想到花時間去維護一個門戶,把這些零散的組件都整合到一起,提供統一的用戶體驗,比如一鍵就能把數據從資料庫chua一下拉到HDFS導入Hive,也能一鍵就chua一下再搞回去;點幾下就能設定一個定時任務,每天跑了給老闆自動推送報表;或者點一下就能起一個Storm的topology;或者界面上寫幾個Query就能查詢Hbase的數據。這時候你的數據平台算是成型了。
當然,磕磕碰碰免不了。每天你都有新的問題和挑戰,否則你就要失業了不是?
你發現社區不斷在解決你遇到過的問題,於是你們架構師每天分出很多時間去看社區的進展,有了什麼新工具,有什麼公司發布了什麼項目解決了什麼問題,興許你就能用上。
上了這些亂七八糟的東西,你以為就安生了?Hadoop平台的一個大特點就是坑多。尤其是新做的功能新起的項目。對於平台組的人,老闆如果知道這是天然坑多的平台,那他也許會很高興,因為跟進社區,幫忙修bug,一起互動其實是很提升公司影響力的實情。當然如果老闆不理解,你就自求多福吧,招幾個老司機,出了問題能馬上帶路才是正道。當然團隊的技術積累不能不跟上,因為數據平台還是亂世,三天不跟進你就不知道世界是什麼樣了。任何一個新技術,都是坑啊坑啊修啊修啊才完善的。如果是關鍵業務換技術,那需要小心再小心,技術主管也要有足夠的積累,能夠駕馭,知道收益和風險。

H. 如何搭建大數據分析平台

一般的大數據平台從平台搭建到數據分析大概包括以下幾個步驟:

Linux系統安裝。分布式計算平台或組件安裝。

數據導入。數據分析。一般包括兩個階段:數據預處理和數據建模分析。數據預處理是為後面的建模分析做准備,主要工作時從海量數據中提取可用特徵,建立大寬表。

數據建模分析是針對預處理提取的特徵或數據建模,得到想要的結果。結果可視化及輸出API。可視化一般式對結果或部分原始數據做展示。一般有兩種情況,行數據展示,和列查找展示。

搭建大數據分析平台到思邁特軟體Smartbi看看,在Excel中對數據進行二次加工,告別依賴於IT人員處理的困境;數據有錯誤也不怕,能夠對缺失、不規范的數據進行二次加工,並能將這些數據入庫;不受限制的分析思路,按您的想法加工數據;將本地數據和線上數據結合起來分析。

數據分析平台靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。

思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台

I. 怎樣搭建企業大數據平台

步驟一:開展大數據咨詢


規劃合理的統籌規劃與科學的頂層設計是大數據建設和應用的基礎。通過大數據咨詢規劃服務,可以幫助企業明晰大數據建設的發展目標、重點任務和藍圖架構,並將藍圖架構的實現分解為可操作、可落地的實施路徑和行動計劃,有效指導企業大數據戰略的落地實施。


步驟二:強化組織制度保障


企業信息化領導小組是企業大數據建設的強有力保障。企業需要從項目啟動前就開始籌備組建以高層領導為核心的企業信息化領導小組。除了高層領導,還充分調動業務部門積極性,組織的執行層面由業務部門和IT部門共同組建,並確立決策層、管理層和執行層三級的項目組織機構,每個小組各司其職,完成項目的具體執行工作。


步驟三:建設企業大數據平台


基於大數據平台咨詢規劃的成果,進行大數據的建設和實施。由於大數據技術的復雜性,因此企業級大數據平台的建設不是一蹴而就,需循序漸進,分步實施,是一個持續迭代的工程,需本著開放、平等、協作、分享的互聯網精神,構建大數據平台生態圈,形成相互協同、相互促進的良好的態勢。


步驟四:進行大數據挖掘與分析


在企業級大數據平台的基礎上,進行大數據的挖掘與分析。隨著時代的發展,大數據挖掘與分析也會逐漸成為大數據技術的核心。大數據的價值體現在對大規模數據集合的智能處理方面,進而在大規模的數據中獲取有用的信息,要想逐步實現這個功能,就必須對數據進行分析和挖掘,通過進行數據分析得到的結果,應用於企業經營管理的各個領域。


步驟五:利用大數據進行輔助決策


通過大數據的分析,為企業領導提供輔助決策。利用大數據決策將成為企業決策的必然,系統通過提供一個開放的、動態的、以全方位數據深度融合為基礎的輔助決策環境,在適當的時機、以適當的方式提供指標、演算法、模型、數據、知識等各種決策資源,供決策者選擇,最大程度幫助企業決策者實現數據驅動的科學決策。


關於怎樣搭建企業大數據平台,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

J. 如何建立一個完整可用的安全大數據平台

整體而言,大數據平台從平台部署和數據分析過程可分為如下幾步:
1、linux系統安裝
一般使用開源版的Redhat系統--CentOS作為底層平台。為了提供穩定的硬體基礎,在給硬碟做RAID和掛載數據存儲節點的時,需要按情況配置。例如,可以選擇給HDFS的namenode做RAID2以提高其穩定性,將數據存儲與操作系統分別放置在不同硬碟上,以確保操作系統的正常運行。

2、分布式計算平台/組件安裝
目前國內外的分布式系統的大多使用的是Hadoop系列開源系統。Hadoop的核心是HDFS,一個分布式的文件系統。在其基礎上常用的組件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等。
先說下使用開源組件的優點:1)使用者眾多,很多bug可以在網上找的答案(這往往是開發中最耗時的地方)。2)開源組件一般免費,學習和維護相對方便。3)開源組件一般會持續更新,提供必要的更新服務『當然還需要手動做更新操作』。4)因為代碼開源,若出bug可自由對源碼作修改維護。
再簡略講講各組件的功能。分布式集群的資源管理器一般用Yarn,『全名是Yet Another Resource Negotiator』。常用的分布式數據數據『倉』庫有Hive、Hbase。Hive可以用SQL查詢『但效率略低』,Hbase可以快速『近實時』讀取行。外部資料庫導入導出需要用到Sqoop。Sqoop將數據從Oracle、MySQL等傳統資料庫導入Hive或Hbase。Zookeeper是提供數據同步服務,Yarn和Hbase需要它的支持。Impala是對hive的一個補充,可以實現高效的SQL查詢。ElasticSearch是一個分布式的搜索引擎。針對分析,目前最火的是Spark『此處忽略其他,如基礎的MapRece 和 Flink』。Spark在core上面有ML lib,Spark Streaming、Spark QL和GraphX等庫,可以滿足幾乎所有常見數據分析需求。
值得一提的是,上面提到的組件,如何將其有機結合起來,完成某個任務,不是一個簡單的工作,可能會非常耗時。

3、數據導入
前面提到,數據導入的工具是Sqoop。用它可以將數據從文件或者傳統資料庫導入到分布式平台『一般主要導入到Hive,也可將數據導入到Hbase』。

4、數據分析
數據分析一般包括兩個階段:數據預處理和數據建模分析。
數據預處理是為後面的建模分析做准備,主要工作時從海量數據中提取可用特徵,建立大寬表。這個過程可能會用到Hive SQL,Spark QL和Impala。
數據建模分析是針對預處理提取的特徵/數據建模,得到想要的結果。如前面所提到的,這一塊最好用的是Spark。常用的機器學習演算法,如樸素貝葉斯、邏輯回歸、決策樹、神經網路、TFIDF、協同過濾等,都已經在ML lib裡面,調用比較方便。

5、結果可視化及輸出API
可視化一般式對結果或部分原始數據做展示。一般有兩種情況,行熟悉展示,和列查找展示。在這里,要基於大數據平台做展示,會需要用到ElasticSearch和Hbase。Hbase提供快速『ms級別』的行查找。 ElasticSearch可以實現列索引,提供快速列查找。

平台搭建主要問題:
1、穩定性 Stability
理論上來說,穩定性是分布式系統最大的優勢,因為它可以通過多台機器做數據及程序運行備份以確保系統穩定。但也由於大數據平台部署於多台機器上,配置不合適,也可能成為最大的問題。 曾經遇到的一個問題是Hbase經常掛掉,主要原因是采購的硬碟質量較差。硬碟損壞有時會到導致Hbase同步出現問題,因而導致Hbase服務停止。由於硬碟質量較差,隔三差五會出現服務停止現象,耗費大量時間。結論:大數據平台相對於超算確實廉價,但是配置還是必須高於家用電腦的。

2、可擴展性 Scalability
如何快速擴展已有大數據平台,在其基礎上擴充新的機器是雲計算等領域應用的關鍵問題。在實際2B的應用中,有時需要增減機器來滿足新的需求。如何在保留原有功能的情況下,快速擴充平台是實際應用中的常見問題。

上述是自己項目實踐的總結。整個平台搭建過程耗時耗力,非一兩個人可以完成。一個小團隊要真正做到這些也需要耗費很長時間。

目前國內和國際上已有多家公司提供大數據平台搭建服務,國外有名的公司有Cloudera,Hortonworks,MapR等,國內也有華為、明略數據、星環等。另外有些公司如明略數據等還提供一體化的解決方案,尋求這些公司合作對 於入門級的大數據企業或沒有大數據分析能力的企業來說是最好的解決途徑。

對於一些本身體量較小或者目前數據量積累較少的公司,個人認為沒有必要搭建這一套系統,暫時先租用AWS和阿里雲就夠了。對於數據量大,但數據分析需求較簡單的公司,可以直接買Tableau,Splunk,HP Vertica,或者IBM DB2等軟體或服務即可。