1. 開源數據挖掘工具有哪些
1、RapidMiner該工具是用Java語言編寫的,通過基於模板的框架提供先進的分析技術。該款工具最大的好處就是,用戶無需寫任何代碼。它是作為一個服務提供,而不是一款本地軟體。值得一提的是,該工具在數據挖掘工具榜上位列榜首。
另外,除了數據挖掘,RapidMiner還提供如數據預處理和可視化、預測分析和統計建模、評估和部署等功能。更厲害的是它還提供來自WEKA(一種智能分析環境)和R 腳本的學習方案、模型和演算法。
RapidMiner分布在AGPL開源許可下,可以從SourceForge上下載。SourceForge是一個開發者進行開發管理的集中式場所,大量開源項目在此落戶,其中就包括維基網路使用的MediaWiki。
2、WEKA
WEKA原生的非Java版本主要是為了分析農業領域數據而開發的。該工具基於Java版本,是非常復雜的,並且應用在許多不同的應用中,包括數據分析以及預測建模的可視化和演算法。與RapidMiner相比優勢在於,它在GNU通用公共許可證下是免費的,因為用戶可以按照自己的喜好選擇自定義。
WEKA支持多種標准數據挖掘任務,包括數據預處理、收集、分類、回歸分析、可視化和特徵選取。
添加序列建模後,WEKA將會變得更強大,但目前不包括在內。
3、R-Programming
如果我告訴你R項目,一個GNU項目,是由R(R-programming簡稱,以下統稱R)自身編寫的,你會怎麼想它主要是由C語言和FORTRAN語言編寫的,並且很多模塊都是由R編寫的,這是一款針對編程語言和軟體環境進行統計計算和制圖的免費軟體。R語言被廣泛應用於數據挖掘,以及開發統計軟體和數據分析中。近年來,易用性和可擴展性也大大提高了R的知名度。
除了數據,它還提供統計和制圖技術,包括線性和非線性建模,經典的統計測試,時間序列分析、分類、收集等等。
2. 特徵詞提取的開源工具有哪些
聯分析方法,得到頻繁集。再刪除不是特徵 詞的頻繁集。利用關聯分析法可找到頻率較高的特徵詞,但找不到低頻率的 特徵詞。基於上述思想,利用高頻特徵詞找到對應的觀點詞,然後利用觀點 詞找出附近低頻特徵詞,可以提高召回率。 4. 文獻[13]提出一種利用互信息(PMI)的特徵提取方法。該方法首先提取出 頻率高於某一閾值的名詞或名詞短語來作為候選特徵詞,然後利用搜索引擎
3. 去哪裡找python的開源項目
GitHub是一個面向開源及私有軟體項目的託管平台,因為只支持git 作為唯一的版本庫格式進行託管,故名GitHub。作為開源代碼庫以及版本控制系統,Github擁有超過900萬開發者用戶。隨著越來越多的應用程序轉移到了雲上,Github已經成為了管理軟體開發以及發現已有代碼的首選方法。在GitHub,用戶可以十分輕易地找到海量的開源代碼。
下面給大家介紹一些GitHub上25個開源項目:
(1)TensorFlow Models
如果你對機器學習和深度學習感興趣,一定聽說過TensorFlow。TensorFlow Models是一個開源存儲庫,可以找到許多與深度學習相關的庫和模型。
(GitHub: https://github.com/tensorflow/models )
(2)Keras
Keras是一個高級神經網路API,用Python編寫,能夠在TensorFlow,CNTK或Theano之上運行。旨在完成深度學習的快速開發(GitHub: https://github.com/keras-team/keras )
(3)Flask
Flask 是一個微型的 Python 開發的 Web 框架,基於Werkzeug WSGI工具箱和Jinja2 模板引擎,使用BSD授權。
(GitHub: https://github.com/pallets/flask )
(4)scikit-learn
scikit-learn是一個用於機器學習的Python模塊,基於 NumPy、SciPy 和 matplotlib 構建。,並遵循 BSD 許可協議。
(GitHub: https://github.com/scikit-learn )
(5)Zulip
Zulip是一款功能強大的開源群聊應用程序,它結合了實時聊天的即時性和線程對話的生產力優勢。Zulip作為一個開源項目,被許多世界500強企業,大型組織以及其他需要實時聊天系統的用戶選擇使用,該系統允許用戶每天輕松處理數百或數千條消息。Zulip擁有超過300名貢獻者,每月合並超過500次提交,也是規模最大,發展最快的開源群聊項目。
(GitHub: https://github.com/zulip/zulip )
相關推薦:《Python入門教程》
(6)Django
Django 是 Python 編程語言驅動的一個開源模型-視圖-控制器(MVC)風格的 Web 應用程序框架,旨在快速開發出清晰,實用的設計。使用 Django,我們在幾分鍾之內就可以創建高品質、易維護、資料庫驅動的應用程序。
(GitHub: https://github.com/django/django )
(7)Rebound
Rebound 是一個當你得到編譯錯誤時即時獲取 Stack Overflow 結果的命令行工具。 就用 rebound 命令執行你的文件。這對程序員來說方便了不少。
(GitHub: https://github.com/shobrook/rebound )
(8)Google Images Download
這是一個命令行python程序,用於搜索Google Images上的關鍵字/關鍵短語,並可選擇將圖像下載到您的計算機。你也可以從另一個python文件調用此腳本。
(GitHub: https://github.com/hardikvasa/google-images-download )
(9)YouTube-dl
youtube-dl 是基於 Python 的命令行媒體文件下載工具,完全開源免費跨平台。用戶只需使用簡單命令並提供在線視頻的網頁地址即可讓程序自動進行嗅探、下載、合並、命名和清理,最終得到已經命名的完整視頻文件。
(GitHub: htt ps://github.com/rg3/youtube-dl )
(10)System Design Primer
此repo是一個系統的資源集合,可幫助你了解如何大規模構建系統。
(GitHub: https://github.com/donnemartin/system-design-primer )
(11)Mask R-CNN
Mask R-CNN用於對象檢測和分割。這是對Python 3,Keras和TensorFlow的Mask R-CNN實現。該模型為圖像中對象的每個實例生成邊界框和分割蒙版。它基於特Feature Pyramid Network(FPN)和 ResNet101 backbone。
(GitHub: https://github.com/matterport/Mask_RCNN )
(12)Face Recognition
Face Recognition 是一個基於 Python 的人臉識別庫,使用十分簡便。這還提供了一個簡單的face_recognition命令行工具,可以讓您從命令行對圖像文件夾進行人臉識別!
(GitHub: https://github.com/ageitgey/face_recognition )
(13)snallygaster
用於掃描HTTP伺服器上的機密文件的工具。
(GitHub: https://github.com/hannob/snallygaster )
(14)Ansible
Ansible是一個極其簡單的IT自動化系統。它可用於配置管理,應用程序部署,雲配置,支持遠程任務執行和多節點發布 - 包括通過負載平衡器輕松實現零停機滾動更新等操作。
(GitHub: https://github.com/ansible/ansible )
(15)Detectron
Detectron是Facebook AI 研究院開源的的軟體系統,它實現了最先進的目標檢測演算法,包括Mask R-CNN。它是用Python編寫的,由Caffe2深度學習框架提供支持。
(16)asciinema
終端會話記錄器和asciinema.org的最佳搭檔。
(GitHub: https://github.com/asciinema/asciinema )
(17)HTTPie
HTTPie 是一個開源的命令行的 HTTP 工具包,其目標是使與Web服務的CLI交互盡可能人性化。它提供了一個簡單的http命令,允許使用簡單自然的語法發送任意HTTP請求,並顯示彩色輸出。HTTPie可用於測試,調試以及通常與HTTP伺服器交互。
(GitHub: https://github.com/jakubroztocil/httpie )
(18)You-Get
You-Get是一個小型命令行實用程序,用於從Web下載媒體內容(視頻,音頻,圖像),支持國內外常用的視頻網站。
(GitHub: https://github.com/soimort/you-get )
(19)Sentry
Sentry從根本上講是一項服務,可以幫助用戶實時監控和修復崩潰。基於Django構建,它包含一個完整的API,用於從任何語言、任何應用程序中發送事件。
(GitHub: https://github.com/getsentry/sentry )
(20)Tornado
Tornado是使用Python開發的全棧式(full-stack)Web框架和非同步網路庫,,最初是由FriendFeed上開發的。通過使用非阻塞網路I / O,Tornado可以擴展到數萬個開放連接,是long polling、WebSockets和其他需要為用戶維護長連接應用的理想選擇。
(GitHub: https://github.com/tornadoweb/tornado )
(21)Magenta
Magenta是一個探索機器學習在創造藝術和音樂過程中的作用的研究項目。這主要涉及開發新的深度學習和強化學習演算法,用於生成歌曲,圖像,繪圖等。但它也是構建智能工具和界面的探索,它允許藝術家和音樂家使用這些模型。
(GitHub: https://github.com/tensorflow/magenta )
(22)ZeroNet
ZeroNet是一個利用比特幣的加密演算法和BitTorrent技術提供的不受審查的網路,完全開源。
(GitHub: https://github.com/HelloZeroNet/ZeroNet )
(23)Gym
OpenAI Gym是一個用於開發和比較強化學習演算法的工具包。這是Gym的開源庫,可讓讓你訪問標准化的環境。
(GitHub: https://github.com/openai/gym )
(24)Pandas
Pandas是一個Python包,提供快速,靈活和富有表現力的數據結構,該工具是為了解決數據分析任務而創建的。Pandas 納入了大量庫和一些標準的數據模型,提供了高效地操作大型數據集所需的工具。此外,它還有更廣泛的目標,即成為所有語言中最強大,最靈活的開源數據分析/操作工具。它目前已經朝著這個目標邁進。
(GitHub: https://github.com/pandas-dev/pandas )
(25)Luigi
Luigi 是一個 Python 模塊,可以幫你構建復雜的批量作業管道。處理依賴決議、工作流管理、可視化展示等等,內建 Hadoop 支持。(GitHub: https://github.com/spotify/luigi )
4. 大數據專業都需要學習哪些軟體啊
大數據處理分析能力在21世紀至關重要。使用正確的大數據工具是企業提高自身優勢、戰勝競爭對手的必要條件。下面讓我們來了解一下最常用的30種大數據工具,緊跟大數據發展腳步。
第一部分、數據提取工具
Octoparse是一種簡單直觀的網路爬蟲,可以從網站上直接提取數據,不需要編寫代碼。無論你是初學者、大數據專家、還是企業管理層,都能通過其企業級的服務滿足需求。為了方便操作,Octoparse還添加了涵蓋30多個網站的「任務模板 (Task Templates)」,操作簡單易上手。用戶無需任務配置即可提取數據。隨著你對Octoparse的操作更加熟悉,你還可以使用其「向導模式 (Wizard Mode)」來構建爬蟲。除此之外,大數據專家們可以使用「高級模式 (Advanced Mode)」在數分鍾內提取企業批量數據。你還可以設置「自動雲提取 (Scheled Cloud Extraction)」,以便實時獲取動態數據,保持跟蹤記錄。
02
Content Graber
Content Graber是比較進階的網路爬網軟體,具有可用於開發、測試和生產伺服器的編程操作環境。用戶可以使用C#或VB.NET調試或編寫腳本來構建爬蟲。Content Graber還允許你在爬蟲的基礎上添加第三方擴展軟體。憑借全面的功能,Content Grabber對於具有基本技術知識的用戶來說功能極其強大。
Import.io是基於網頁的數據提取工具。Import.io於2016年首次啟動,現已將其業務模式從B2C轉變為B2B。2019年,Import.io並購了Connotate,成為了一個網路數據集成平台 (Web Data Integration Platform)。憑借廣泛的網路數據服務,Import.io成為了商業分析的絕佳選擇。
Parsehub是基於網頁的數據爬蟲。它可以使用AJax,JavaScript等等從網站上提取動態的的數據。Parsehub提供為期一周的免費試用,供用戶體驗其功能。
Mozenda是網路數據抓取軟體,提供企業級數據抓取服務。它既可以從雲端也可以從內部軟體中提取可伸縮的數據。
第二部分、開源數據工具
01Knime
KNIME是一個分析平台,可以幫助你分析企業數據,發現潛在的趨勢價值,在市場中發揮更大潛能。KNIME提供Eclipse平台以及其他用於數據挖掘和機器學習的外部擴展。KNIME為數據分析師提供了2,000多個模塊。
02OpenRefine(過去的Google Refine)是處理雜亂數據的強有力工具,可用於清理、轉換、鏈接數據集。藉助其分組功能,用戶可以輕松地對數據進行規范化。
03R-Programming
R大家都不陌生,是用於統計計算和繪制圖形的免費軟體編程語言和軟體環境。R語言在數據挖掘中很流行,常用於開發統計軟體和數據分析。近年來,由於其使用方便、功能強大,得到了很大普及。
04RapidMiner
與KNIME相似,RapidMiner通過可視化程序進行操作,能夠進行分析、建模等等操作。它通過開源平台、機器學習和模型部署來提高數據分析效率。統一的數據科學平台可加快從數據准備到實施的數據分析流程,極大地提高了效率。
第三部分、數據可視化工具
01
Datawrapper
Microsoft PowerBI既提供本地服務又提供雲服務。它最初是作為Excel附加組件引入的,後來因其強大的功能而廣受歡迎。截至目前,它已被視為數據分析領域的領頭羊,並且可以提供數據可視化和商業智能功能,使用戶能夠以較低的成本輕松創建美觀的報告或BI儀錶板。
02
Solver
Solver專用於企業績效管理 (CPM) 數據可視化。其BI360軟體既可用於雲端又可用於本地部署,該軟體側重於財務報告、預算、儀錶板和數據倉庫的四個關鍵分析領域。
03
Qlik
Qlik是一種自助式數據分析和可視化工具。可視化的儀錶板可幫助公司有效地「理解」其業務績效。
04
Tableau Public
Tableau是一種互動式數據可視化工具。與大多數需要腳本的可視化工具不同,Tableau可幫助新手克服最初的困難並動手實踐。拖放功能使數據分析變得簡單。除此之外,Tableau還提供了入門工具包和豐富的培訓資源來幫助用戶創建報告。
05
Google Fusion Tables
Fusion Table是Google提供的數據管理平台。你可以使用它來收集,可視化和共享數據。Fusion Table與電子表格類似,但功能更強大、更專業。你可以通過添加CSV,KML和電子表格中的數據集與同事進行協作。你還可以發布數據作品並將其嵌入到其他網路媒體資源中。
06
Infogram
Infogram提供了超過35種互動式圖表和500多種地圖,幫助你進行數據可視化。多種多樣的圖表(包括柱形圖,條形圖,餅形圖和文字雲等等)一定會使你的聽眾印象深刻。
第四部分、情感分析工具
01
HubSpot』s ServiceHub
HubSpot具有客戶反饋工具,可以收集客戶反饋和評論,然後使用自然語言處理 (NLP) 分析數據以確定積極意圖或消極意圖,最終通過儀錶板上的圖形和圖表將結果可視化。你還可以將HubSpot』s ServiceHub連接到CRM系統,將調查結果與特定聯系人聯系起來。這樣,你可以識別不滿意的客戶,改善服務,以增加客戶保留率。
02
Semantria
Semantria是一款從各種社交媒體收集帖子、推文和評論的工具。Semantria使用自然語言處理來解析文本並分析客戶的態度。通過Semantria,公司可以了解客戶對於產品或服務的感受,並提出更好的方案來改善產品或服務。
03
Trackur
Trackur的社交媒體監控工具可跟蹤提到某一用戶的不同來源。它會瀏覽大量網頁,包括視頻、博客、論壇和圖像,以搜索相關消息。用戶可以利用這一功能維護公司聲譽,或是了解客戶對品牌和產品的評價。
04
SAS Sentiment Analysis
SAS Sentiment Analysis是一款功能全面的軟體。網頁文本分析中最具挑戰性的部分是拼寫錯誤。SAS可以輕松校對並進行聚類分析。通過基於規則的自然語言處理,SAS可以有效地對消息進行分級和分類。
05
Hootsuit Insight
Hootsuit Insight可以分析評論、帖子、論壇、新聞站點以及超過50種語言的上千萬種其他來源。除此之外,它還可以按性別和位置對數據進行分類,使用戶可以制定針對特定群體的戰略營銷計劃。你還可以訪問實時數據並檢查在線對話。
第五部分、資料庫
01
Oracle
毫無疑問,Oracle是開源資料庫中的佼佼者,功能豐富,支持不同平台的集成,是企業的最佳選擇。並且,Oracle可以在AWS中輕松設置,是關系型資料庫的可靠選擇。除此之外,Oracle集成信用卡等私人數據的高安全性是其他軟體難以匹敵的。
02
PostgreSQL
PostgreSQL超越了Oracle、MySQL和Microsoft SQL Server,成為第四大最受歡迎的資料庫。憑借其堅如磐石的穩定性,它可以處理大量數據。
03
Airtable
Airtable是基於雲端的資料庫軟體,善於捕獲和顯示數據表中的信息。Airtable提供一系列入門模板,例如:潛在客戶管理、錯誤跟蹤和申請人跟蹤等,使用戶可以輕松進行操作。
04
MariaDB
MariaDB是一個免費的開源資料庫,用於數據存儲、插入、修改和檢索。此外,Maria提供強大的社區支持,用戶可以在這里分享信息和知識。
05
Improvado
Improvado是一種供營銷人員使用自動化儀錶板和報告將所有數據實時地顯示在一個地方的工具。作為營銷和分析領導者,如果你希望在一個地方查看所有營銷平台收集的數據,那麼Inprovado對你再合適不過了。你可以選擇在Improvado儀錶板中查看數據,也可以將其通過管道傳輸到你選擇的數據倉庫或可視化工具中,例如Tableau、Looker、Excel等。品牌,代理商和大學往往都喜歡使用Improvado,以大大節省人工報告時間和營銷花費。