Ⅰ 岩层下的石油是如何生成的中国地下石油储量是多少按照目前采油速度还能开采多少年
岩层下的石油是由生物质经过一定的化学反应而形弊闹唤成的有机化合物。在地球历史的不同阶段,海洋中死去生物残骸租凯和植物遗体被沉积在海底泥沙中,而这些有机质会随着地壳板块的运动和挤压被埋藏到深处。高温高压等地质条件促进了这些有机质在地下通过裂解和氧化发生化学反应,最终形成石油。
据统计,中国拥有相当数量的石油储量,目前为全球第五大石油生产国。根据中国国家统计局发布的数据,截至2021年年底,中国原油年末探明储量为173.68亿吨,可采储量为12.2亿吨。中国目前每年开采弯并约5亿吨原油。
按照目前采油速度来看,如果采取有效措施加强勘探和开采技术创新,并尽可能控制采油速度,中国还能开采数十年甚至更长时间。不过需要注意的是,随着世界范围内对于低碳化、环保化越来越重视,未来将面临从传统能源向新能源转型升级的压力与挑战。
Ⅱ 原油是怎样开采出来的
经过了大量的勘探研究,一旦确定油气田有工业开采价值,就要进行开发、采出石油的工作。要使石油和天然气流到地表,首先要打好钻井。经过地质勘探和开发人员的艰苦劳动和研究,找到了地下的油气藏,确定了打井的位置、数量和深度,钻井工人就要在定好的井位上钻井。目前常用的钻井技术是转盘(旋转)钻井。它由一套地面设备(包括钻机、井架)和一套提升系统及钻杆、钻具和钻头等组成。通过提升系统将钻具提起、放下,靠转盘转动带动钻具转动,再转动钻头破碎岩石。被破碎的岩石碎屑被泥浆泵带人井内的泥浆循环再带到地面。钻头磨损了,就再将钻具提上来,更换新钻头,放入井底再次钻进,直至目的层。这是目前世界上使用得最广泛的钻井方法。在钻进的过程中,要及时地在钻孔中安置一根叫套管的钢管,并用水泥封固在通道井壁上,防止地层坍塌。套管的口径向下逐渐变细,在套管中间再下一根引油钢管,叫油管。地面井口上还要安装一套井口设备,上面布满了各种压力阀门和各个方向的管线,很像一棵树,所以人们叫它“采油树”。
是否能把原油从地下采到地面来,还取决于地下油层压力的大小。我国大庆、胜利、辽河、塔里木、大港等油田的许多油藏的地下油层压力都很大,只要一打开采油树的闸门,地下的石油和天然气就会不停地往外喷,这就是“自喷井”。现在世界上60%—72%的石油是靠自喷井采出来的。有的自喷井最高日产量可达万吨以上。
地下深处的石油能从钻井中源源不断地喷出,除了充足的油源,还要使油层中有足够大的地层压力。石油原来所埋藏的地层深处有来自上覆岩层和地层水的巨大压力。钻井打开油层之前,压力处于平衡状态。一旦油层之上的地层被打开一条“烟囱”,这种平衡就被打破了,石油就会从井的四周向压力突然降低的油井底部流动。另外,石油中还常常含有许多天然气,它和石油在地层中几乎密不可分,就好像一个装满汽水的瓶子,钻井就像是打开了汽水瓶的盖子,油层里的石油随着溶解气体的膨胀,先涌向井孔,然后由井筒喷出井口。
经过一段时间的自喷以后,由于地层压力降低,油井的喷力就会慢幔下降,以后就会喷喷停停,最后就无法自喷了。目前国内外维持油层压力的最常用也最有效的方法是“以水驱油”的注水开采法,就是把水从另外的一些钻井中打到油层下面,用水补充由于石油开采而留下的空间,从而保持地层的压力,这是使油井顺利产油、保持自喷的关键。我国大庆油田采取的早期内部注水开发措施,使油层压力长期保持不变。有的开发区虽已开采了20余年,油层压力不但未下降,还有上升的趋势,使油田的开发达到了国际先进水平。
有的油田从刚一开始采油就无法自喷。造成这种现象的原因有多种,比如地下油层压力
Ⅲ 原油是怎么形成的
原油指未被加工的石油,即直接从地下开采出来未经提炼或加工的物质,也称黑色金子,是一种化石燃料,可用来生产许多不同的物质。下面由我为你详细介绍原油的相关知识。
原油是怎么形成的:
原油主要由碳氢化合物组成。在岩层孔隙内,常以液体或气态(天然气)存在;有时部份凝结成固态。原油是古代生物遗骸,堆积在湖里、海里,或是陆地上,经高温、高压的作用,由复杂的生物及化学作用转化而成的。 石油在地层中一点一滴地生成,并浮游于地层中。由于浮力的关系,油点在每年缓慢地沿着地层或断层向上移动,直到受不透油的封闭地层阻挡而停留下来。当此封闭内的油点越聚越多,便形成了油田。 储油气构造 一个良好的储存油气的封闭构造,除应具有良好的孔隙率及渗透率的储油层外,此储油层的上方必须有致密不透油、气、水的岩层,如页岩、泥岩等,这就是所谓的盖层,其作用为封盖住进来的油气,不让油气向上逃逸。 一般常见的储油气封闭构造依其型态可分为构造封闭如背斜、断层等,及地层封闭,联合封闭。
原油主要性质
原油原油的性质包含物理性质和化学性质两个方面。物理性质包括颜色、密度、粘度、凝固点、溶解性、发热量、荧光性、旋光性等;化学性质包括化学组成、组分组成和杂质含量等。
原油密度
原油相对密度一般在0.75~0.95之间,少数大于0.95或小于0.75,相对密度在0.9~1.0的称为重质原油,小于0.9的称为轻质原油。
原油粘度
原油粘度是指原油在流动时所引起的内部摩擦阻力,原油粘度大小取决于温 度、压力、溶解气量及其化学组成。温度增高其粘度降低,压力增高其粘度增大,溶解气量增加其粘度降低,轻质油组分增加,粘度降低。原油粘度变化较大,一般在1~100mPa·s之间,粘度大的原油俗称稠油,稠油由于流动性差而开发难度增大。一般来说,粘度大的原油密度也较大。
原油凝固点
原油冷却到由液体变为固体时的温度称为凝固点。 原油的凝固点大约在-50℃~35℃之间。凝固点的高低与石油中的组分含量有关,轻质组分含量高,凝固点低,重质组分含量高,尤其是石蜡含量高,凝固点就高。
原油含蜡量
含蜡量是指在常温常压条件下原油中所含石蜡和地蜡的百分比。石蜡是一种白色或淡黄色固体,由高级烷烃组成,熔点为37℃~76℃。石蜡在地下以胶体状溶于石油中,当压力和温度降低时,可从石油中析出。地层原油中的石蜡开始结晶析出的温度叫析蜡温度,含蜡量越高,析蜡温度越高。
析蜡温度高,油井容易结蜡,对油井管理不利。
原油含硫量
含硫量是指原油中所含硫(硫化物或单质硫分)的百分数。原油中含硫量较小,一般小于1%,但对原油性质的影响很大,对管线有腐蚀作用,对人体健康有害。根据硫含量不同,可以分为低硫或含硫石油。
原油含胶量
含胶量是指原油中所含胶质的百分数。原油的含胶量一般在5%~20%之间。胶质是指原油中分子量较大(300~1000)的含有氧、氮、硫等元素的多环芳香烃化合物,呈半固态分散状溶解于原油中。胶质易溶于石油醚、润滑油、汽油、氯仿等有机溶剂中。
其他
原油中沥青质的含量较少,一般小于1%。沥青质是一种高分子量(大于1000以上)具有多环结构的黑色固体物质,不溶于酒精和石油醚,易溶于苯、氯仿、二硫化碳。沥青质含量增高时,原油质量变坏。
原油中的烃类成分主要分为烷烃、环烷烃、芳香烃。根据烃类成分的不同,可分为的石蜡基石油、环烷基石油和中间基石油三类。石蜡基石油含烷烃较多;环烷基石油含环烷烃、芳香烃较多;中间基石油介于二者之间。中国已开采的原油以低硫石蜡基居多。大庆等地原油均属此类。其中,最有代表性的大庆原油,硫含量低,蜡含量高,凝点高,能生产出优质煤油、柴油、溶剂油、润滑油和商品石蜡。胜利原油胶质含量高(29%),比重较大(0.91左右),含蜡量高(约15-21%),属含硫中间基。汽油馏分感铅性好,且富有环烷烃和芳香烃,故是重整的良好原料。
原油成分组成
平均而言,原油由以下几种元素或化合物组成:
碳——84%;
氢——14%;
硫——1到3%(硫化氢、硫化物、二硫化物和单质硫);
氮——低于1%(带胺基的碱性化合物);
氧——低于1%(存在于二氧化碳、苯酚、酮和羧酸等有机化合物中);
金属——低于1%(镍、铁、钒、铜、砷)。
原油炼制
原油的问题在于它含有几百种不同类型的烃,并且这些物质全部混合在一起。需要把不同种类的烃分离开来,以提炼出其中的有用物质。幸运的是,有一种简单 方法 可以分离这些物质,这就是石油精炼。石油精炼过程始于一个分馏柱。随着烃链长度的增加,其沸点也会逐渐升高,因此可以通过蒸馏法将其全部分离。这就是炼油厂里发生的过程——在精炼过程的一个环节中,原油被加热,在不同的蒸发温度下,会将不同长度的烃链分离出来。每种长度不同的链都具有不同的性质,从而对应不同的用途。为了理解原油组分的多样性,以及为什么石油精炼对社会如此重要,看看下面所列出的利用原油生产出来的产品:
石油气
用于加热、烹饪和制造塑料,小分子烷烃(1-4个碳原子),俗称的甲烷、乙烷、丙烷和丁烷,沸程=低于40℃,经常被加压液化为LPG(液化石油气)。
石脑油或轻石油
一种中间产物,将被进一步加工为汽油 ,含有5-9个碳原子的烷烃的混合物,沸程=60-100℃。
汽油汽油
发动机燃料,液体,烷烃和环烷烃(5-12个碳原子)的混合物,沸程=40-205℃。
煤油
喷气发动机和 拖拉机 的燃料;制造其他产品的原材料,液体,烷烃(10-18个碳原子)和芳香烃的混合物,沸程=175-325℃。
柴油或分馏柴油
用作柴油机燃料或加热用油;制造其他产品的原材料,液体碳原子数大于等于12的烷烃,
沸程=250-350℃。
润滑油
用于发动机润滑油、润滑脂和其他润滑剂,液体,长链(20-50个碳原子)的烷烃、环烷烃和芳香烃,沸程=300-370℃。
重油或燃料油
用作工业燃料;制造其他产品的原材料,液体,长链(20-70个碳原子)的烷烃、环烷烃和芳香烃,沸程=370-600℃。
渣油
Ⅳ 石油是怎么形成的
今年来又有专家提出新的观点认为是地壳中的甲烷等再地壳内高压,高温聚会生成
○众所周知,石油成因的权威说法是古代生物生成石油,教科书上也是一直这么写的
○实际上在地质界有关石油的成因一直存在着激烈的争论
○有科学根据的不同学说的争论,体现着科学精神
在日常生活中,我们常用“化石燃料”来称呼石油、煤炭、天然气等经过千百万年才形成的,埋藏在地层中的能源。在煤层中,人们早已发现了树木的性状和由树木的脂类物质形成的琥珀等直接证据,表明煤炭确是由死去的植物变成的;对于天然气,石油地质工作者们也已证明,它们可以由石油、甲烷细菌的生物化学作用、煤炭的分解作用而形成,还可以从地下深处的岩浆中释放出来富含甲烷的“无机成因天然气”。石油是由古代生物(包括动物与植物,尤以浮游生物为主) 生成的,既有机成因,这一点也被大多数学者认同。然而,随着全球范围内石油勘探难度的增加和人们对油田的认识加深,越来越多的现象用“石油有机成因”的理论无法解释,长期失宠的无机成油理论又重新受到世界石油地质家的普遍重视。
与传统石油有机成因理论相悖的现象
近年来,传统石油地质理论和长期从事油气勘探的专家学者们遇到的许多问题,难以用传统的石油“有机成因理论”圆满地解释:
一、一些地区为什么找到了大约15亿年前形成的石油?而按照传统的石油地质与生物学理论,当时的生物量似乎并不足以形成石油。为什么在不含生物的地层中也能找到石油?比如加拿大阿尔伯塔省的阿塔巴斯河区和美国堪萨斯的克拉富特———普鲁斯油田,都是在没有富含生物的沉积岩层。
二、为什么许多大型油气田都分布在地壳的大型线状断裂带上?
它们的分布显然受地球板块的边界控制,比如美国在洛杉矶的逆掩断裂带上就发现了19个油田。为什么一些油气田都与大山脉相邻——那里大多是板块或者地块的结合带。我国新疆克拉玛依油田在着名的“克——乌大断裂带”附近就找到了十余个油气田,而离开这条断裂带就很难发现油气田。
三、为什么世界上的大型、超大型油气田大多集中分布?比如中东地区,这仅仅用“那里的海相地层可以更多地富集有机质”的观点解释恐怕难以令人信服。
四、为什么大型油气田的分布区内,往往地热值都较高?而且大油田的地层深部大多存在着一个地幔柱—那是油藏与地下深处相通的证据。
五、为什么世界上许多油田的汞含量都很高?其含量高于大气中含量的几十到几百倍。为什么一些油气区中的的氦含量也高得惊人(比如我国四川南部天然气田中的氦的比例相当高,经过提纯后可以生产工业性氦)?为什么在世界许多大型铅锌矿中都发现了大量碳质沥青?而铅锌矿富集的主要原因就是地壳深部的热液上涌。
六、1973年辽宁省大地震后,辽河油田的石油勘探形势突然好转,1986年产量突破1000万吨,一跃成为继大庆、胜利油田之后我国第三大油田。而且,辽河盆地内平均每平方公里年产原油近一万吨;山东胜利油田的面积仅为3000平方公里,但采出的原油已达3000万吨;玉门老君庙油田经过60 年的开采以后,已经采出了几倍于原来探明的地质储量,这些都是用常规的石油地质理论难以解释的。
七、传统的石油地质理论认为,石油的生成至少需要数百万年以上的时间,但是,最新的实验室内热模拟试验表明,石油的生成并不需要太高的温度和压力,人们对美国黄石公园内热泉的有机质研究也表明,生成石油的时间有几千年足矣!更有甚者,墨西哥湾水域漂浮的藻类经太阳暴晒数周后,竟有液态的油滴生成。
面对这些向传统石油地质理论挑战的现象,人们似乎有理由认为:世界上有些油田的石油似乎正在源源不断地得到补充;一些油气可能来自地壳深处;石油的生成、运移、聚集可能与地震有关,而地震恰恰是地壳运动的表征,它能把地下深处的油气“送”上来吗?
由来已久的“石油无机生成理论”
油气生成可能是20世纪地质科学中争论得最为激烈的问题之一,而且是一个古老而敏感的问题,从俄罗斯着名化学家门捷列夫算起,油气无机成因的假说提出已有100多年了。
从20世纪初开始,一批又一批的俄罗斯科学家不断地提出“石油无机生成”的理论和生成机制,其中影响较大的有库德良采夫、克鲁泡特金、萨尔基索夫、波尔菲里也夫和波实卡雷夫等;西方则有罗宾逊、古德、阿布拉加诺、萨特马里等。
尽管持“石油无机生成”观点的学者也不少,但他们提出的“原理”归纳起来就是:石油来源于地幔,是地幔沿着地壳裂隙上涌过程中的衍生物。任何物体都是在特定的内力和外力作用下,处于力的动态平衡而显现的一种物质形态。在超高压和高温的条件下,地幔的原子、原子核、直至基本粒子等层次上的物质都是地壳中的任何物质无与伦比的,而且都是与地壳中的元素呈现出的性状不同的。所以地壳中不存在什么构成原油的碳氢化合物。但是在地壳裂开以后,那里地幔的超高压状态被打破,原来的稳定结构被破坏,使之发生热膨胀,不断地释放内能而蜕变为岩浆。沿着裂缝上涌的岩浆由于发生热膨胀而不断耗散内能,在特定的压强和温度下,重新达到内和外力平衡,进而演化出100多种元素。石油就是地幔发生热膨胀时,在特定的环境中形成的一种新物质形态。
在石油的形成过程中,率先上涌的岩浆,由于在地壳裂缝中所受的压强极小而大幅度地发生热膨胀,形成大量的岩浆气,按照一定的组分组成气体分子,比如乙炔、水等。
岩浆中不断地析出的气体,不仅使裂隙中的压强和温度不断升高,而且使裂隙中形成的烃类分子的密度连续增大,它们的内聚力不断加强,导致烃类分子趋向于形成复杂的结构。即乙炔→乙烯→甲烷→乙烷→丙烷→丁烷。当裂隙中碳氢化合物气体浓度以及裂隙中的压强进一步升高时,就会使低碳类烃聚合为高碳烃烷,进而发生相态变化,也就是说,气体的烃类变成了液体的烃类——石油。(这种)石油在形成的初期,因为颗粒极小,可以随着热而向上运动,它们到裂隙的上方大量聚合,就可以融合成更大的油珠。当密度大的油珠进一步融合,其重量将大于岩浆气体热膨胀时的所产生的推力,于是纷纷坠落或沿着裂隙壁面流向裂隙的底部并溢出岩浆。
由于裂隙中的压强、温度和碳氢化合物的气体浓度达到相当高的标准后,才会形成石油,所以,石油淹没的岩浆析出的气体刚刚脱离岩浆就会遇到很高的压强,不仅在原子的层次上形成稳定的结构,而且迅速化合为碳氢化合物。于是,岩浆气体的一部分在石油里上浮的过程中,就化合为石油,而且会不断地增加,渐渐地就可能形成油藏
Ⅳ 石油是怎么形成的
关于石油的形成有生物沉积变油和石化油两种学说:
一、生物沉积变油:认为石油是古代海洋或湖泊中的生物经过漫长的演化形成,属于生物沉积变油,不可再生;
二、石化油:认为石油是由地壳内本身的碳生成,与生物无关,可再生。这个理论认为在地壳内已经有许多碳,有些碳自然地以碳氢化合物的形式存在。碳氢化合物比岩石空隙中的水轻,因此沿岩石缝隙向上渗透。石油中的生物标志物是由居住在岩石中的、喜热的微生物导致的。
目前,第一种说法较广为接受。
(5)胜利石油的油是怎么炼成的扩展阅读:
石油是由碳氢化合物为主混合而成的,具有特殊气味的、有色的可燃性油质液体。它成分主要有:油质(这是其主要成分)、胶质(一种粘性的半固体物质)、沥青质(暗褐色或黑色脆性固体物质)、碳质。
石油主要被用作燃油和汽油,燃料油和汽油在2012年组成世界上最重要的二次能源之一。石油也是许多化学工业产品如溶剂、化肥、杀虫剂和塑料等的原料。被称为“工业的血液”。
Ⅵ 石油是怎么形成的
石油是古代海洋或湖泊中的生物经过漫长的演化形成,属于生物沉积变油,不可再生。
石油主要被用来作为燃油和汽油,也是许多化学工业产品,如溶液、化肥、杀虫剂和塑料等的原料。
石油的主要组成成分是碳和氢,碳氢化合物也简称为烃,烃是石油加工和利用的主要对象,石油中所含各种元素并不是以单质形式存在,而是以相互结合的各种碳氢及非碳氢化合物的形式而存在。
(6)胜利石油的油是怎么炼成的扩展阅读:
石油的颜色非常丰富,有深红、金黄、墨绿、黑、褐红、至透明;石油的颜色是它本身所含胶质、沥青质的含量决定的,含的越高颜色越深。
我国华北大港油田有的井产无色石油,克拉玛依石油呈褐至黑色,大庆、胜利、玉门石油均为黑色。无色石油在美国加利福尼亚、原苏联巴库、罗马尼亚和印尼的苏门答腊均有产出。
无色石油的形成,可能同运移过程中,带色的胶质和沥青质被岩石吸附有关,但是不同程度的深色石油占绝对多数。