❶ 中国开采海里石油成本多少
中国海洋石油,有53亿桶储量,开采成本30刀,当前油价按照100刀每桶计算,每桶毛利70美元,预计毛利3700亿美元,而海油当前市值才7000亿人民币,严重不对。
❷ 石油知识
石油的原料是生物的尸体,生物的细胞含有脂肪和油脂,脂肪和油脂则是由碳、氢、氧等3种元素组成的。生物遗体沉降于海底或湖底并被淤泥覆盖之后,氧元素分离,碳和氢则组成碳氢化合物。
我们已经在地球上发现3000种以上的碳氢化合物,石油是由其中350种左右的碳氢化合物形成的,比石油更轻的碳氢化合物则成为天然气。煤矿与石油的成因很类似,但煤是植物的化石,又是固态。
大量产生碳氢化合物的岩石即称为“石油源岩”。埋没于地中的石油源岩受到地热和压力的影响,再加上其他多种化学反应之后就产生石油,而石油积存于岩石间隙之间便形成油田。
地壳变动而石油生成
我们最近逐渐了解地球内部的变化与石油的生成有十分密切的关系,在描述此种关系之前,让我们先来了解一下地球内部的状况。
地球的半径大约是6400公里,覆盖地球表面的地壳下方是由岩石形成厚达2900公里的“地慢”,其下方则是由金属形成的“地核”,并以大约5100公里深处分界,分为“外核”与“内核”。外核主要是由液态金属铁组成,内核则主要是固态铁。 地球表面铺满坚硬的“板 块”,厚度约有100公里,是由向上喷出的“洋脊”产生的,’在 缓缓移动到“海沟”后就沉降于 另一板块下方。 80年代后期,人们学会捕捉地震波传递到地球内部时的立体图,于是发现令人惊讶的地慢活动状况。高温又巨型的上升流“超级卷流”由地底涌上后,以蘑菇形态分别存在于夏威夷和非洲大陆正下方。此外,低温的巨型下降流“冷卷流”则以水滴形态占据亚洲大陆及南美洲大陆正下方的冷卷流似乎是沉降到地函底部。
我们现在的知道的是,地幔内部落热对流是以冷卷流向超级卷注移动的形态而形成的。此种运动不仅影响板块运动,似乎也对整个地球的地质和环境的变化产生很大的影响。
超级卷流是石油制造者?
现在全球生产的石没之中,有60%是产生了恐龙称霸地球时期所形成的石油源岩,所形成的“黑色页岩”则遍布世界各地。黑色页岩主要是由未经氧化的藻类等浮游植物遗骸堆积而成。由此可知当时必须有可让浮游植物繁殖又不会产生氧化的缺氧环境条件,大量的黑色页岩才会形成。
最近发现,石油源岩在此时代的形成似乎与超级卷流运动的活化可以促使由地下涌出的地幔物质所形成的洋脊体积增大,海面因而上升,使得较低的陆地变成浅海,而浅海则具有可当石油原料的藻类等浮游植物极易繁殖的环境。
浅海地区的藻类等浮游植物因而出现大幅增加和大量死亡的现象,周围的细菌为分解其残骸而消耗氧气,于是出现了缺氧环境。
地球温暖化也会改变深层海水的流动状况,由于高纬度地区与低纬度地区海水的温度高低不同,较低温但含有丰富氧气的高纬度地区深层海水会流向低纬度地区海洋。但地球温暖化的现象减少。氧气较少的海域因而扩大,无法氧化的浮游植物便逐渐堆积,所留下的大量有机物则形成石油源岩。
生物的演化改变了石油的性质
由于石油的原料是生物的遗骸,因此调查石油的性质便可以得知古老时期的生物演化过程和地球环境历史。
生命的演化大概有下述的过程。生命是于38亿年前诞生,并逐渐地进行演化,到了距今5亿5000万年前的古生代寒武纪时期,爆发性的演化才开始,大约4亿4500万年前,生命也登上了陆地。
4亿4000万年至4亿年前时期,石油源岩的主要成分是当时繁茂的浮游植物所形成的耐碳氢化合物。另一方面,羊齿类植物在此时期繁琐盛于海岸近处,因此以陆上植物为原料的石油源岩也出现了。
2亿9000万年前,广大的陆地普遍出现由裸子植物组成的森林,并到处形成被沼泽地包围的湖沼,藻类便在湖沼中开始繁殖。由此也产生了以藻类为原料的新种石油源岩,这也是陆上植物的繁盛促使新性质石油源岩诞生的一例。
9000万年前时期,被子植物和针叶树林开始逐渐扩张到高纬度地区和高地,因而出现以陆地木材为原料的石油源岩。另一方面,树木的树脂成为轻质原油的原料,形成新的石油源岩。针叶树林的增加竟使得木材取代了藻类,成为石油源岩的主要原料。
最近石油性质的分析技术有长足的进步,我们已逐渐可以取得有关石油原料性质,以及由热能引起的变化过程等的详细资料。由此种资料即能进一步了解原料生物遗骸逐渐堆积时的环境状况。
大约1亿7000万年到200万年前所发生的全球性规模“阿尔卑斯造山运动期”也造出了巨油田,在此时期,分布于广大范围的1亿年前前后形成的石油源岩都没入地中。现有的石油和天然气有大约3分之2就是此时期形成的。
参考资料:http://xueke.lesun.org/print.php?id=10058
石油产品可分为:石油燃料、石油溶剂与化工原料、 润滑剂、石蜡、石油沥青、石油焦等6类。 其中, 各种燃料产量最大, 约占总产量的90%; 各种润滑剂品种最多, 产量约占5%。 各国都制定了产品标准, 以适应生产和使用的需要。
汽油
是消耗量最大的品种。 汽油的沸点范围(又称馏程)为30 ~ 205°C, 密度为0.70~0.78克/厘米3,商品汽油按该油在汽缸中燃烧时抗爆震燃烧性能的优劣区分,标记为辛烷值70、80、90或更高。号俞大,性能俞好,汽油主要用作汽车、摩托车、快艇、直升飞机、农林用飞机的燃料。商品汽油中添加有添加剂(如抗爆剂四乙基铅)以改善使用和储存性能。受环保要求,今后将限制芳烃和铅的含量。
喷气燃料
主要供喷气式飞机使用。沸点范围为60~280℃或150~315℃(俗称航空汽油)。为适应高空低温高速飞行需要,这类油要求发热量大,在-50C不出现固体结晶。 煤油 沸点范围为180 ~ 310℃ 主要供照明、生活炊事用。要求火焰平稳、光亮而不冒黑烟。目前产量不大。
柴油
沸点范围有180~370℃和350~410℃两类。对石油及其加工产品,习惯上对沸点或沸点范围低的称为轻,相反成为重。故上述前者称为轻柴油,后者称为重柴油。商品柴油按凝固点分级,如10、-20等,表示低使用温度,柴油广泛用于大型车辆、船舰。由于高速柴油机(汽车用)比汽油机省油,柴油需求量增长速度大于汽油,一些小型汽车也改用柴油。对柴油质量要求是燃烧性能和流动性好。燃烧性能用十六烷值表示愈高愈好,大庆原油制成的柴油十六烷值可达68。高速柴油机用的轻柴油十六烷值为42~55,低速的在35以下。
燃料油
用作锅炉、轮船及工业炉的燃料。商品燃料油用粘度大小区分不同牌号。
石油溶剂
用于香精、油脂、试剂、橡胶加工、涂料工业做溶剂,或清洗仪器、仪表、机械零件。
润滑油
从石油制得的润滑油约占总润滑剂产量的95%以上。除润滑性能外,还具有冷却、密封、防腐、绝缘、清洗、传递能量的作用。产量最大的是内燃机油(占40%),其余为齿轮油、液压油、汽轮机油、电器绝缘油、压缩机油,合计占40%。商品润滑油按粘度分级,负荷大,速度低的机械用高粘度油,否则用低粘度油。炼油装置生产的是采取各种精制工艺制成的基础油,再加多种添加剂,因此具有专用功能,附加产值高。
润滑脂
俗称黄油,是润滑剂加稠化剂制成的固体或半流体,用于不宜使用润滑油的轴承、齿轮部位。
石蜡油
包括石蜡(占总消耗量的10%)、地蜡、石油脂等。石蜡主要做包装材料、化妆品原料及蜡制品,也可做为化工原料产脂肪酸(肥皂原料)。
石油沥青
主要供道路、建筑用。
石油焦
用于冶金(钢、铝)、化工(电石)行业做电极。
除上述石油商品外,各个炼油装置还得到一些在常温下是气体的产物,总称炼厂气,可直接做燃料或加压液化分出液化石油气,可做原料或化工原料。 炼油厂提供的化工原料品种很多,是有机化工产品的原料基地,各种油、炼厂气都可按不同生产目的、生产工艺选用。常压下的气态原料主要制乙烯、丙烯、合成氨、氢气、乙炔、碳黑。液态原料(液化石油气、轻汽油、轻柴油、重柴油)经裂解可制成发展石油化工所需的绝大部分基础原料(乙炔除外),是发展石油化工的基础。目前,原油因高温结焦严重,还不能直接生产基本有机原料。炼油厂还是苯、甲苯、二甲苯等重要芳烃的提供者。 最后应当指出,汽油、航空煤油、柴油中或多或少加有添加剂以改进使用、储存性能。各个炼油装置生产的产物都需按商品标准加入添加剂和不同装置的油进行调和方能作为商品使用。石油添加剂用量少,功效大,属化学合成的精细化工产品,是发展高档产品所必需的,应大力
石油勘探,就是考证地质历史,研究地质规律,寻找石油天然气田。主要要经过四大步骤,即:确定古代的湖泊和海洋(古盆地)的范围;然后从中查出可能生成石油的深凹陷来;第三步是在可能生油的凹陷周围寻找有利于油气聚集的地质圈闭;最后对评价最好的圈闭进行钻探,查证是否有石油或天然气,并搞清它有多少储量。下面对这四个步骤的工作内容作一介绍。(具体的石油勘探技术方法后面有专题论述)
(一)确定古湖泊古海洋的范围
前面已经讲到了,石油是在古代的湖泊或海洋的沉积物中生成的,油田也是在这里形成的。因此,确定古湖古海(即古盆地)所在及其范围当属是首要的。
确定古湖古海的地质依据,主要是研究岩石和化石(古代保存在地层中的生物遗体或印模、痕迹等)。通过地质家们的研究,现在地球上的岩石种类极多,但最基本的可以分为三大类,一是火成岩(亦叫岩浆岩),它是由地球深部的岩浆喷发到浅处或地面后,凝固而成的。电视中曾多次报导过现代火山喷发的壮观场面,因此对这种岩石的来源与形成是好理解的。二是沉积岩,前面在油气形成问题时,已谈到了它的来源与形成过程了,它就是确定古湖古海最主要的物质依据。也就是说,哪里有沉积岩,哪里就是古代湖泊或海洋,这是毫无疑问的。三是变质岩,这主要是各种岩石(包括火成岩、沉积岩),在地壳的变迁过程中因经受高温高压而改变了原来的性质变成了既坚硬又致密的另一类岩石。
古湖泊和古海洋又怎样区别呢?这主要是通过化石来确定和区分的。因为湖泊与海洋的生物特征是大不一样的。另外,即使同样的沉积岩,湖泊和海洋岩石的物理化学性质也是不一样的。简单地说,是以当时水的咸淡来分的,淡水为湖,咸水为海……。
古湖古海的保存状况对找油找气的影响十分重要,在后来的地质变迁中,或遭受过风化剥蚀,造成残缺不全;或遭到火成岩的侵入破坏;或经过严重的变质过程等等,这些情况也都要通过对岩石性质和地层保存的完整程度等方面考证其发育过程。
(二)查明生油凹陷的位置
不论是湖盆或者海盆,面积都很大,一般也有上万平方公里,大如新疆的塔里木盆地,竟超过50万平方公里。盆底的形态也是凹凸不平,很不规则的,有高低,有深浅,较低的部分称之为凹陷,高的部位称之为凸起或隆起,一般水中的生物遗体比较容易富集在盆底的低处,所以凹陷是被认为盆地中有利于生油的部位,当然也是较深的为好,故在明确了盆地范围以后的第二步就是查明深凹陷的位置,也就是找出能够生成较多油气的地方。
(三)寻找地质圈闭
寻找地质圈闭是寻找油田的中心环节。任何一个找油部门对这一工作都是十分重视的。地质圈闭有大有小,有深有浅,形态各异。例如大庆油田的大庆长垣,其圈闭面积达千余平方公里,是迄今为止我国找到的最大储油圈闭。当然也有小到不足一个平方公里的,有的单独的含油圈闭只有一口油井。地质圈闭有的可以部分地露出地面,甚至一座高山即为一个完整的地质圈闭;有的埋藏很深,地表完全看不出来。现在我国有能力探测到的圈闭埋深,大约在五、六千米深左右,在这个深度以内,用人工地震的方法可以查得比较准确,钻井也能够得着。寻找圈闭自然也是一个由浅入深、由大到小的过程,对于深而小的圈闭,找到它当然是很困难的,它要求的技术精度、难度要比一般情况下高的多。
找到地质圈闭以后,还要对圈闭进行是否具备储油条件的研究和评价工作。一般来说,在靠近生油凹陷的地质圈闭,有利于油气运移进去,成为有希望的油田,而对其他地方的圈闭,评价就要低一些。再则各个圈闭本身的保存是否完整,可储藏油量的大小等情况也需要进行研究和评价。
(四)钻探油气田
对所找到的地质圈闭,里面是否储藏着石油或天然气,在没有对它进行钻井验证之前,一般是很难给以定论的。因此,对地质圈闭进行钻探,这是寻找油田的最后一个步骤,也是极其重要、极其关键的一个步骤。其重要性及关键性在于,这个步骤中所采取的一切技术和手段,它都关系到一个油田能否顺利诞生以及它的实际命运问题。
在油田发现史上有不少这样的情况:一个圈闭本来是充满了石油的,但因钻探技术及方法不当,而没有发现其中的油气,直到若干年后,人们再次认识,再次钻探时才证实是个油田;还有的在首次钻探中就发现了油层,但其中油气就是出不来或油气产量很低、结果评价为没有工业开采价值而弃置一旁,可是以后的重新钻探或经过一定的技术措施,又喷出了高产油气流。可见,钻探是发现油气田至关重要的一步,它与前面的工作关系,如同十月怀胎与一朝分娩那样,所以必须十分认真对待。
在盆地内或一个圈闭上第一口或第一批探井应该打在什么位置,这是要综合考虑多种资料以后才能确定的。其实,第一口井就找出油田来的可能性是比较小的,如新疆克拉玛依因为旁边有黑油山可以看得见,它就是第一号探井生油的。至于我国东部在复盖区找油田,就不那么容易了,大庆油田的第一口出油井是松基3井,说明在此以前至少已有了两口空井;胜利油田的第一口出油探井是华8井,说明在此之前曾经至少打了7口干井;大港油田是在打了近20口探井以后才发现的;任丘油田的第一口出油井是任4井,在它以前,曾经有5口以上的井落了空。当然,确定探井井位也不是无章可循、完全盲目的,简单而言,以找油为目的的探井(另有以探明地层为目的的井称之为基准井或参数井)总是尽可能定在圈闭的最高位置,其理由就是油和气总是浮在水的上面。这里的所谓"高"是指含油层的“高”。地质结构十分复杂,因而“高”也不是绝对的高,形象地比喻:如果要钻探的圈闭象个反扣着的碗或盆,第一口探井就定在拱起的碗或盆底上;如果这个圈闭象一条竖放着的大鱼,第一口井位就定在其脊背的高处;如果圈闭象一块倾斜的板(克拉玛依),探井就定在它的上方。也有极少的例外,比如一般人的头发都在头顶上最密,但秃顶者却在头部的周围才有头发,如果一定要在头顶去剪发,只会徒劳无益,新疆准噶尔盆地就有这样的实例,五十年代在其最高处打成了一口探井,一无所获,到了八十年代又在四周较低处打井,却出了油,用“秃顶”周围的头发来比喻,确有相似之处。也有确实在“盆底”找到油的,犹如炒菜的锅里放点油,它不可能停在锅沿上,这是因为这里的地层里几乎没有水,石油不占密度差的优势浮起来,只好“沉底”了,这种实例很少,所以“高处找油”仍然是首先应当遵循的准则。
当一个地质圈闭经钻探后,有一口井获得了有工业开采价值的油气流,这就算是找到了一个油田。但是,还必须进一步把这个油田的具体范围和出油能力搞清楚。因此,在钻探过程中发现油气之后,就应立即查清油层的层数、深度、厚度,并要搞清油层的岩性和其他物理性质,还要对油层进行油气生产能力的测试和原油性质的分析。然后再进行扩大钻探,进一步探明圈闭含油气情况,算出地下的油气储藏量有多少。这样,对单独个油田来说,它的初步勘探工作就算结束了。
最后这里还需加以说明的是,在实际寻找油田的工作中,这个步骤不可能绝然分开进行,而总是相互联系、交错进行的。找有利生油凹陷的过程中,往往也同时就找到了地质圈闭;在找地质圈闭过程中,也会发现新的沉积地层或新的生油凹陷;在钻探圈闭时,也会发现新的生油层和储集层,以致给人们增加许多新的认识。总的来说,寻找油田的过程,一方面是人们对地下情况不断积累资料、深化认识的过程,一方面又是找油技术不断进步的过程。
国土资源部研究人员10日说,中国石油资源储量仍处于增长期,尽管已进入低速增长阶段。
国土资源部信息中心全球资源战略研究开放实验室副主任张新安在此间召开的“2005中国石油论坛”上说,得益于高强度的石油勘查活动,中国石油储量继续保持良好增长势头。
截至2004年底,中国累计探明包括原油和凝析油在内的石油地质储量为248.44亿吨,比2003年底增长5.4%;累计探明石油可采储量67.91亿吨,增长3.4%;累计采出量43亿吨;剩余可采储量24.91亿吨,增长2.4%。
张新安指出,中国石油储量替代率尚维持在合理水平。储量替代率是反映储量接替能力的指标,是指国内年新增探明可采储量与当年开采消耗储量的比值。替代率为1,表明勘探所导致的储量增加与开采所导致的储量消耗持平。储量替代率大于1,表明储量的增加大于消耗,小于1则表示勘探新增的储量不能完全弥补储量的消耗。
张新安介绍说,1993年以来,中国石油储量替代率基本维持在1.0左右。2004年,更是达到了1.27的高水平。
此外,自1993年成为石油进口国以来,中国的石油储采比一直维持在14至16的范围内。储采比是指国内石油剩余可采储量与当年采储量之比,即目前石油剩余可采储量可供消费的时间。张新安说,尽管这一比值仅及2004年世界石油平均储采比43的三分之一,但由于世界平均储采比受中东储采比拉高影响,这仍是一个较为合理的、可以保持石油工业持续健康发展的水平。
张新安认为,目前中国石油资源面临的主要问题是开采和消费的高强度。2004年,中国占世界石油储量的1.5%,产量占世界总量的4.5%,但消费量却占世界总量的8.2%。
尽管如此,近年来中国原油产量保持较快增速。由2000年的1.63亿吨增至2004年的1.75亿吨,年均增长1.1%。预计今年将达到1.8亿吨,而按照以前的预测,到2010年才可能达到这个数字。
张新安说,中国石油资源潜力巨大,尚有约三分之二的潜力待探明。在这三分之二的待探明潜力中,三分之一可以在当前技术和成本条件下探明;三分之一可以利用现有技术探明,但发现成本将大幅增加;其余三分之一将依赖未来技术的创新。
他建议,中国应采取有效措施,加大石油勘探开发力度,建立与市场经济相适应的新体制,完善油气基础地质投入机制,实行风险投资机制,推进勘探开发竞争机制。
张新安表示,中国还应采取包括经济和行政手段在内的各种有效措施,加强对非常规油气资源的评价勘查。据介绍,中国油页岩预测资源总量4832亿吨,但尚未展开系统调查评价,探明程度仅为6%。油砂目前尚无查明资源储量,预计资源量达80亿吨以上。
❸ 海洋矿产资源及勘查概况
改革开放以来,我国实施科技兴海战略,发展海洋高新技术,开展战略性、基础性的区域地质调查与编图,海岸带重点地区环境地质调查与评价,不同海区的油气勘查与评价,大陆架及邻近海域调查,东北太平洋中国开辟区多金属结核勘查和极地/南大洋地质科学考察,以及国家各类专项调查研究和参与IODP、IGBP等国际合作。我国海洋地学界瞄准国际发展前沿,应用高新技术,在海底探测技术、河口海岸第四纪地质与沉积动力学研究、古海洋学、海洋油气田快速评价技术方法和大洋多金属结核(壳)、热液硫化物矿产资源调查的理论创新和技术创新研究中取得一批重要成果。
2.2.1 区域调查与矿产资源勘查概况
尽管我国海洋地质调查研究和矿产资源勘查取得一系列新成果和高新技术研发取得跨越式发展,但与发达国家相比,无论是区域地质调查、基础理论研究,还是应用性的矿产资源勘查评价,特别是高新技术的研究开发总体水平相差较大。估计区域调查、矿产勘查程度落后15~20年,科学研究水平落后10~15年,高新技术水平落后20~25年(表2.1)。
表2.1 国内外海洋地学科技发展趋势和水平差距对比
续表
2.2.2 海洋矿产资源概况
我国管辖海域面积约300万平方千米,海洋矿产资源分布、种类及其资源量比较丰富。包括滨岸平原地下卤水、滨海砂矿、建筑砂砾石、海底煤田、陆架区的石油与天然气、陆坡区的油气、天然气水合物和国际海底区域中国开辟区的多金属结核,以及正在进行勘查的富钴结壳、热液硫化物矿床等(表2.2)。
表2.2 中国管辖海域矿产资源及其资源量
续表
2.2.2.1 石油与天然气
石油与天然气资源是重要的能源矿产,是经济社会发展的重要支柱,石油供应与国家安全问题已成为国际社会普遍关注的焦点,引起世界各国政府的高度重视。目前,我国的油气资源形势十分严峻,自从1993年成为原油净进口国以来,我国原油消费量增长迅猛,而原油产量却增长缓慢,净进口量从1994年的290万吨增长到2007年的15600万吨。2007年我国石油产量突破2.00亿吨(含海外3500万吨),而消费量高达3.50亿吨,进口依存度达48%。超过日本成为世界第2大消费国。原油消费量和净进口量增长之快及原油产量(包括海外份额)增长缓慢的状况(表2.3,图2.3),令人担忧。
表2.3 1994~2007年我国原油供需情况表
图2.3 1994~2007年来我国原油供需情况变化图
温家宝总理强调:“国土资源部门不能放松油气资源战略调查的责任,争取在地质调查程度低的陆地新区和海域有新的发现”。“油气勘查要选准重点,集中力量,有所突破,力争拿下整装大油田。这是地质勘查工作的一项重大战略任务”。
海域油气资源是陆域油气资源的重要补充和战略接替,我国管辖海域蕴藏有丰富的油气资源、天然气水合物资源和其他矿产资源。已有的地质调查及矿产资源评价表明,我国海域内发育中新生界厚度大于2000米的沉积盆地38个(近海域11个,南海中、南部27个),具有较大的油气资源潜力。最新评价了36个沉积盆地共拥有油气资源量为358亿~410亿吨油当量。其中近海域11个沉积盆地拥有218亿~242亿吨油当量;南海中、南部海域25个沉积盆地为141亿~168亿吨油当量(表2.4、表2.5)。在36个沉积盆地中,有11个盆地是单一盆地油气资源量超过10亿吨油当量的高丰度盆地。其中,近海的5个高丰度盆地拥有近海油气总资源量的90.6%,约为我国管辖海域油气总资源量的53.0%~55.0%,它们分别是:渤海湾、东海陆架、珠江口、琼东南和莺歌海5个含油气盆地,其油气资源量均在20亿吨油当量以上,渤海湾盆地的油气资源量更高达100亿吨以上。
表2.4 我国近海11个盆地油气潜在资源概况
表2.5 南海中南部海域各沉积盆地以沉积岩体积法估算的资源量
南海中、南部海域6个高丰度油气盆地,拥有该海域油气总资源量的75.0%,约为我国管辖海域油气总资源量的29.0%~30.0%。它们分别是:笔架南、万安、曾母、文莱-沙巴、南薇西及北康6个含油气盆地,其油气资源量均在10亿~20亿吨油当量以上,曾母盆地位于我国传统疆界线以内资源量达到40亿吨油当量以上。在这些盆地中,有的是由于勘探探投入力度不足,尚未做出准确评价;有的则由于存在海域争议无法成为可开发利用资源。因此,发现新的油气远景区和新的含油气层位就成为解决海上油气后备接替区的当务之急。
2.2.2.2 天然气水合物
1999年,我国海域天然气水合物资源调查,首先由广州海洋地质调查局在南海西沙海槽进行并首先发现了BSR。2001年,由青岛海洋地质研究所负责的“215”专项,首次在东海冲绳海槽进行了以寻找天然气水合物为目的的高分辨率地震综合调查评价工作。
2007年5月1日,中国地质调查局在南海北部神狐海域首钻获天然气水合物实物样品,水深1245米,在海底下183~201米,层厚18米,丰度20.0%,甲烷含量99.7%;5月15日,在第4个站位又钻获天然气水合物实物样品,水深1230米,海底下191~225米,层厚34米,丰度20.0%~43.0%、甲烷含量99.8%。
迄今为止,南海陆坡共圈出11个天然气水合物远景区,总面积为125833.6平方千米,总资源量693.3亿吨油当量;东海冲绳海槽共圈出10个天然气水合物远景区,东边界为冲绳海槽中央地堑连线的水合物分布总面积为8643平方千米,总资源量约为401.62亿立方米。应当指出,上述总资源量目前尚无钻井资料证实,因此风险系数较大。各远景区的分布状况和资源量如下(表2.6、表2.7):
表2.6 南海天然气水合物分布面积及资源量
表2.7 东海冲绳海槽中南部天然气水合物分布面积及资源量
2.2.2.3 建筑砂砾石
石英砂矿主要分布于我国的辽宁、山东、浙江、福建、广东、广西、海南和台湾省(区)沿岸,以福建、两广石英砂砂质最佳。石英砂矿主要赋存于滨海晚更新世和全新世海积阶地、风成砂丘和海滩上,砂体长数百米至上千米,宽数十米至数百米,厚数厘米至数米,矿层1~4层,埋深一般小于15米,矿体呈层状、似层状、透镜状,沿海岸呈水平状微向海方向倾斜,矿层较稳定,其分布范围、厚度、矿物成分、粒度及化学成分均变化不大,探明储量30.70亿吨。
2.2.2.4 滨海砂矿
滨海砂矿主要包括锆石、钛铁矿、独居石、磷钇矿、金红石、磁铁矿、锡石、铬铁矿、铌钽铁矿、砂金、金刚石等,金属和非金属砂矿探明储量约3000万吨,主要分布在辽宁、山东、福建、台湾、广东、广西、海南诸省(区)。各类矿床191个(其中大型35个、中型51个、小型105个):①独居石、磷钇矿、钛铁矿、金红石、锡石、铌钽铁矿主要分布在广东、广西和海南沿海地带;②锆石遍及上述各省(区)沿岸地带,主要分布在山东、广东、海南;③砂金主要分布于辽宁、山东、台湾;金刚石砂矿则发现于辽宁省复州湾。
2.2.2.5 海底煤田
山东龙口市东北约5千米海域,为陆上北皂煤矿向海底延伸,可采煤层6层,煤系地层总厚度67~278米,一般厚约200米,煤田分布面积约150平方千米,主采煤层厚约10米。探明储量10亿~12亿吨。
该矿于2005年6月投产,其第一个采煤工作面当年试采完毕,共开采原煤8.2万吨;第二个采煤工作面于2006年8月10日正式投产,至2007年1月底完成试采,共开采原煤42.5854万吨。
2.2.2.6 滨岸平原地下水、地下卤水
1)地下淡水。受地理环境、地形条件和地质构造等因素影响,我国东部沿海地区水文地质条件变化复杂,地下水环境特征各不相同,主要表现在:长江口以南(包括长江口)地区水资源比较丰富;长江口以北地区(简称北方地区)气候干旱,地表水资源相对缺乏,水资源短缺;在平原海岸海陆交替相沉积层普遍分布,地下水咸淡交错、水质复杂;在滨海平原北方地区浅部以咸水层为主,有些地区淡水层埋藏很深,南方地区常见咸淡水层交错分布,淡水层中夹残留咸水透镜体。我国的海岸线长达18000多千米,拥有海岸线的沿海城市有53个(不包括县级市),其中22个是滨海城市。我国的沿海地区是人口、城市、经济最密集,人流、物流、资金流、信息流最活跃的地区。人口高度集中、区域城镇化和社会经济的快速发展,使沿海地区水资源的需求量逐年增加,但沿海地区的地下水汇水范围较小,地下水资源量有限,水资源的供需矛盾突出。改革开放以来,由于经济快速发展,带来严重的环境污染。不仅北方地区缺水,传统的多水地区也严重缺乏洁净的地下水。因此,沿海地区缺少洁净淡水资源的问题将是制约经济发展、困扰人民生活的严重问题,对地下淡水资源的治理和环境保护已刻不容缓。
2)地下卤水。地下卤水是在干燥气候和内陆海湾低平潮滩环境下,经蒸发—浓缩—埋藏而形成的。它的形成不仅与气候条件有关,而且同本区的地质地貌特征和第四纪海陆变迁过程有关。在黄海、渤海沿岸低地平原区,第四纪滨海相地下卤水有着广泛的分布。目前,已探明的滨海相地下卤水区主要分布在渤海沿岸地区,具体分布在:莱州湾(包括黄河三角洲)、渤海湾与辽东湾沿岸滨海平原区。华南及东南沿海地区,在第四纪地层中已发现有卤水分布。在辽宁的清水河滨海区,已探明的卤水分布面积约8平方千米,卤水储量达1774.00万立方米;在渤海湾,已探明的卤水分布面积达到1212平方千米,储量达到12.29亿立方米;在莱州湾两岸,已探明的卤水分布面积为3527平方千米,卤水储量达78.80亿立方米。
2.2.3 世界海洋矿产资源勘查与开发现状
2.2.3.1 石油与天然气
世界海洋大陆架面积约2800万平方千米,近海含油气盆地约1600万平方千米,其中具有开发远景的面积达500余万平方千米。据有关资料估算,海洋石油探明地质储量约1500亿吨,占世界石油总地质储量的2/5,已探明可采储量350亿吨,占世界石油可采储量的1/3;海洋天然气地质储量为46.6万亿立方米,约占世界天然气总地质储量(140.0万亿立方米)的1/3。
迄今已在800多个含油气盆地中发现大、中型油气田500余个,其中超过6500万吨的大油气田220个、超过10亿吨的特大型油气田有10个。近20年来,全世界发现的新油气田有60%~70%是在海域,其中大部分在陆架区,少量在深水陆坡区。目前有80多个国家和地区进行勘探开发,每年打各类探井约2000口,其中深水钻井已达450~2000米以上,井深小于3000米占20%;3000~5000米占70%;超深井(大于5000米)占10%。
现今海上采油气的国家已达40余个,拥有各类钻井平台约3000座。近年来,拥有先进技术与设备的发达国家,其勘探范围已扩展到大于300米水深的陆坡区,并不断有新的油气田发现。海洋石油产量从1990年的9.07亿吨增至2007年的12.50亿吨,占世界石油总产量的34%;2007年海底天然气产量7000多亿立方米,占世界天然气总产量的25%。近20年来,世界石油总产量的增长主要是来自海洋。
2.2.3.2 滨海砂矿
近几十年来,由于经济的发展对矿产资源需求的急速增长,海洋沿岸及浅海陆架区的砂矿成为矿业中具有重要经济价值的矿产资源,如:金、铂、锡、钍、铬、钛、铌、钽、锆、金刚石、琥珀和石英砂、砾石等都是具有商业价值的开采对象。这些滨海砂矿广泛地分布于许多沿海国家,如澳大利亚、新西兰、印度、美国、日本、印度尼西亚、泰国、马来西亚、斯里兰卡、加拿大、俄罗斯、巴西、南非和欧洲一些沿海国家。
这些砂矿作为矿产资源的经济价值在逐年增长。在20世纪60~70年代,世界沿海国家从滨海砂矿中开采的钛铁矿占世界总产量的30%,独居石占80%,金红石占98%,锆石占100%,锡石占50%以上。虽然目前大规模开采的主要是滨海地带的矿床,但在最近20~30年间,由于地质勘探和采矿工业技术方法的改进,开采水下砂矿已变得更为有利,开采水深已达到50~100米,因而浅海陆架区砂矿资源所占比重有所增大。如印度尼西亚、马来西亚和泰国有储量巨大的砂锡矿;印度和斯里兰卡沿岸有极丰富的独居石、锆石、钛铁矿砂矿;加拿大和日本沿岸有大量的磁铁矿砂矿;西南非洲的沿岸和陆架区有金刚石等。这些有经济价值的砂矿都具有良好的开发前景。
2.2.3.3 大洋矿产资源
迄今为止,人类在深海大洋底发现的固体矿产资源有:多金属结核(锰结核)、富钴结壳、多金属软泥、热液硫化物、磷钙土等。这些矿产资源分布广、储量大,具有巨大的经济价值和开发前景。
20世纪70~90年代,西方发达国家,特别是工业化国家美国、英国、法国、日本、苏联、联邦德国及发展中国家印度、中国、韩国等都投入大量资金,开展国际海底区域多金属结核、钴结壳和热液硫化物矿床的调查研究。发达国家甚至已完成深海底结核的试验性开采,一旦时机成熟即可投入商业性开发。
1)多金属结核。大洋多金属结核中含有80余种金属元素,其中Mn、Fe、Cu、Co、Ni、Zn的含量较高。有人计算过,仅太平洋CC区约有540.00亿吨干结核,其中含Mn100.00亿吨、Cu5.20亿吨、Co1.15亿吨、Ni6.50亿吨。在整个大洋底,目前已发现67处远景区(21个矿域、81个矿区),其中太平洋底13个矿域、41个矿区,大西洋底2个矿域、20个矿区,印度洋底6个矿域、20个矿区。金属结核富集区资源量为817.00亿吨,其中太平洋占80.0%、大西洋占10.5%、印度洋占9.5%,而且在总资源量中,富Ni-Cu型结核占25.0%、富Mn型占3.5%、富Cu型为3.5%,其余为Fe-Mn型结核。
2)富钴结壳。铁锰结壳是一种生长在海山基岩上自生的铁锰氧化物和氢氧化物,由于它含Co量较高,又称富钴结壳。结壳厚度一般2~5厘米,主要分布于水深较浅的海山区(小于3500米),最佳水深800~2800米,富集区结壳的厚度大于5厘米,其丰度和覆盖率都远高于多金属结核,平均丰度可达40千克/平方米,覆盖率达80.0%~100.0%,含有数十种金属元素,但含量较高的有Mn、Co、Cu、Ni、Pb,还有Pt、Ag、Ti等,其中Co含量特别高,平均0.5%,最高可达1.8%~2.5%,Pt含量也高达2×10-6,比陆地同类矿床高出几十倍。在大洋中富钴结壳分布的海域较广,几乎海山、海台、海丘地区都可找到。主要分布于中太平洋海山,南太平洋一些群岛周围海域;大西洋火山区,中大西洋、南大西洋一些海隆;印度洋一些群岛周围海域。其中以中太平洋海山区和中南太平洋海山区的富钴结壳分布广、厚度大,钴含量高且具有较高的商业经济价值。如莱恩-库克群岛海区结壳分布面积约5.5平方千米,估计资源量为21.5亿吨,其中含Co146.5万吨、Cu17.2万吨、Ni99.0万吨、Mn5.3万吨。据不完全统计,太平洋西部构造隆起带上,富钴结壳的资源量达10.0亿吨,Co金属量达到数百万吨,经济价值超过1000亿美元。
3)热液硫化物。大洋底热液矿化物矿主要分布在水深1050~3700米的大洋中脊两侧断裂构造带的热液活动区。至今已发现和勘探了200多个热液活动区,并证明此类热液硫化物矿床具有重要的经济价值。现已探明10余个具有工业价值的矿区,其中7个位于EEZ区:①沙特阿拉伯和苏丹的亚特兰蒂斯Ⅱ海渊;②加拿大的中谷和勘探者海岭;③汤加的劳海盆;④北斐济海盆;⑤东中马努斯海盆和巴布亚新几内亚的轴海山;⑥东中国海的冲绳海槽和日升矿区;⑦厄瓜多爾尔尔的加拉帕戈斯海盆。在这些海域中只有3个(EPR13°N、TAG、Logachev)位于国际海底区域中。如TAG热液硫化物矿床储量约500万吨;东太平洋海隆勘探者海岭矿床储量150万~200万吨;北胡安·德富卡海岭储量近1000万吨。据有关海底“黑烟囱”的勘查资料表明,大多为小、中型矿床,金属资源量为150万~2376万吨。
❹ 中南海东部石油开采
中国海洋石油南海东部公司成立于1983年6月,是中国海洋石油总公司下属的四个地区油公司之一。负责南海东部东经113°10′以东、面积约13.1万平方千米海域的石油、天然气的勘探开发生产业务,主要是珠江口盆地,授权全面执行该海域的对外合作的石油合同和协议。1996年产油量超过1000万吨,1997年1297万吨,发现油田和含油气构造24个,探明优质储量近5亿吨,南海东部连续10年油气产量超千万立方米。2008年产量达到1200万吨。
一、油气历史
1974年,开始海洋石油物探作业。
1976年,西沙群岛永兴岛钻探了南海第一口深探井——西永1井。
1983年,中国海洋石油南海东部公司成立。
1983年11月,恩平构造上钻探对外合作第一口探井,发现第一个含油构造。
1984年,菲利普斯公司在西江24-3获得第一口高产油井,发现西江24-3油田。
1985年8月,发现惠州21-1油田。
1987年,发现陆丰13-1油田。
1996年,原油产量超过1000万吨,成为全国第四大油田。
1996年5月,流花11-1油田与美国阿莫科公司合作投产,成为当时我国海上最大对外合作油田。
1997年1月,与圣太非石油公司合作发现番禺4-2油田。
1997年6月,与菲利普斯公司和派克顿公司合作,我国第一口大位移井——南海西江24-3-A14井钻探成功,标志着我国在钻井上又一进步。
2005年12月,南海东部海域第一个自营开发的油田——陆丰13-1油田投产,证实了技术的提高。
2006年,通过与哈斯基公司的精诚合作,中国海上第一口水深超千米的探井——荔湾3-1-1井获得成功。南海珠江口盆地荔湾深水天然气构造的重大发现,填补了中国深水油气发现的空白。该构造拥有约1000亿立方米的探明储量,大大增强了公司对中国海域深水勘探前景的信心。
2007年8月7日,中国海洋石油总公司与新加坡石油有限公司就26/18区块签订产品分成合同,这是中国海油与新加坡石油的首度合作。据知,26/18区块位于中国南海东部海域的珠江口盆地,区块面积4961平方千米,水深85~200米。根据合同规定,在勘探期内,新加坡石油将在26/18区块进行二维地震数据采集,并钻探预探井。在勘探期内,新加坡石油将承担全部的勘探费用。中国海油将有权参与合同区内所有商业油气发现最多51%的权益。中国海洋石油有限公司副总裁兼勘探部总经理朱伟林先生表示,中国海域丰富的勘探潜力有着高度的吸引力,也正缘于此,我们才能不断地迎来新老朋友,合作勘探中国海域的油气资源。
2009年,陆丰13-1油田成为中国海油第一个因石油合同到期而回归自营的油田。
二、惠州油田群
由惠州21-1油田、惠州26-1油田、惠州32-2油田、惠州32-3油田和惠州32-5油田形成惠州油田群。其中,惠州21-1油田于1985年8月发现,1990年9月投产。惠州26-1油田于1988年3月发现,1991年11月投产。惠州32-2油田于1990年12月发现,1995年6月投产。惠州32-3油田于1991年1月发现,1995年6月投产。惠州32-5油田于1996年9月发现,1999年2月投产。
2000年6月,惠州26-1北项目成功投产。
三、流花11-1油田
1987年发现流花11-1油田。
流花11-1油田是目前南中国海发现的最大的油田。该油田位于南中国海的珠江口盆地,在香港东南方向300米的水中。阿莫科于1985年从中国海洋石油总公司获得区块29/04合同。经过初步勘探研究后,流花11-1A开钻。测试产油量是每天2240桶重油。随后进行的评价井钻探流花11-1-3和流花11-1-4证实油储量巨大,超过10亿桶。1993年12月,科麦奇公司加入合作开发的队伍,持有24.5%的股份,阿莫科也持有24.5%股份,中国海洋石油总公司东部公司持有51%的股份。
1996年5月,流花11-1油田与美国阿莫科公司合作投产,成为当时我国海上最大对外合作油田。中外合作采用创7项世界第一、国际领先水平的开发生产技术。流花油田因此被世界海洋石油界誉为“国际海洋石油皇冠上的明珠”。
2003年7月24日,中国海油从跨国石油公司英国石油公司和科麦奇手中接过油田所有权,随即进行了机构重组,本部对油田作业的支持大大增强。同时,拓展管理思路、细化管理、强化成本控制、稳定骨干队伍等一系列措施得以实施。2004年,油田产量增加7.7%,生产时率提高至94.31%。2004年10月22日流花油田提前完成年度生产任务,产量甚至超过2001年生产高峰时期。与之对应的是,油田直接作业费减少3.9%,桶油成本降低10%,行政管理费压缩到2003年的30%,并且逐年降低。
2006年5月17日,台风“珍珠”中心直袭流花11-1油田。在油田作业的“南海胜利”号FPSO(浮式生产储卸油装置)的6根锚链被台风刮断,3根软管断裂,油舱破裂。油田被迫停产。中国海油自力更生,经过一年奋战,流花油田提前成功复产,并取得7项创新成果,意味着中国人开始掌握深水油气田设备维修技术,一举打破了外国公司对世界深水工程领域的垄断。
❺ 钻一口油气井要花多少钱
油、气钻井是一项高投入产业,特别是钻深井、地质条件复杂的探井、高压油气井及海上油气井费用就更昂贵。油、气井成本高的主要原因,一是钻井使用的钻机和配套费用很高,目前我国配套一部国产中型的石油钻机大约需要几千万元人民币,若建造一艘海上钻井平台则需几亿元人民币。钻机的使用寿命是有一定年限的,因而,每部钻机在现场工作时,钻机的折旧费很高,再加上工作时消耗的油、水、材料和作业者的工资,一部钻机的日费用为几万至几十万元人民币。二是钻井本身的费用也很高。钻深井或探井时一般要下入多层套管,使用几只乃至十几只钻头,要配制价格昂贵的钻井液,要进行地质录井、测井、测试和注水泥作业,发生钻井事故时要花费大量的人力物力进行处理等。钻一口石油天然气井的成本高低,主要决定于钻井的地区、井型、井深和井下地质情况等。海洋、沙漠地区钻井比陆地钻井的成本高;探井比开发井的成本高;深井比浅井的成本高。目前我国东部地区陆地探井成本一般每米约1000~2000元人民币;开发井成本每米约800~1500元人民币;深探井(大于5000米的井)每米的钻井成本约5000元人民币。我国四川、云贵地区因地层坚硬,海上和沙漠钻井因自然和地面条件的原因,成本要比东部陆地钻井成本高得多。我国在陆地钻一口深探井一般要花费几千万元人民币,在井下地质情况复杂、钻井工程难度大时,一口深探井则需要上亿元的费用。难怪人们常说:“一口井就是一个工厂”。
美丽的油田和井架
❻ 有时候会看到海上有平台作业,他们是在挖石油吗
在南海功绩卓着的“海洋石油981”号钻井平台又取得了新战绩。日前中国海洋石油总公司(中海油)宣布,“海洋石油981号”已经在缅甸安达曼海进行海上钻探作业。作为中国高端装备和服务“走出去”的代表,“海洋石油981”号将继续参与“一带一路”建设,在国际合作与市场竞争中接受检验。
深水海域已经成为国际上油气勘探开发的重要区域。作为中国首座自主设计、建造的第六代深水半潜式钻井平台,“海洋石油981”最大钻井深度10000米,最大作业水深3000米,于2008年4月28日开工建造,整合了全球一流的设计理念和一流的装备,配备了国际最先进的第三代动力定位系统,可在中国南海、东南亚、西非等深水海域作业。
安达曼海所在位置
此前,海洋石油981平台曾在南海取得过重大功绩。中国企业所属“981”钻井平台在中国西沙群开展钻探活动。虽然中方作业开始后,越南方面即出动包括武装船只在内的大批船只,非法强力干扰中方作业,现场船只最多时达60多艘,屡次冲闯中方警戒区及冲撞中方公务船。
最终“海洋石油981”平台顶住越方压力,完成西沙群岛海域的钻探活动,按计划顺利取全、取准了当地的相关地质数据资料,获得了重大发现;“海洋石油981”又在南海北部深水区陵水17-2-1井测试获高产油气流。
❼ 如何勘探、采集位于海洋中的油田
如果某国政府想开采石油。资源国政府,在缺乏没有相应的技术实力、管理水平的情况下。往往会与国际油公司合作,最早的时候是把地租给别人(租让制),自己收税、收租金外一概不管,后来学乖了,成立国家石油公司与国际有公司合作,签署产量分层协议(Proction Sharing Contract),利用别人的资本、技术与管理优势的同时,保留了矿产的所有权。再后来,翅膀更硬了,资源国政府对石油这一宝贵战略资源也越来越重视起来,提出了风险服务合同,不以产量分成支付酬劳,直接给钱,招标投标价低者得,爱干不干。资源国政府是老板,国际油公司是总承包商,当然还有更苦逼的打工的,那就是技术分包商,譬如物探公司、钻探公司等等。既然合同准备好了,那就可以找技术公司开干了。当然,从勘探到开发,再到生产是一个漫长的流程,不是今天挖个洞明天就可以冒油。
前期需要获取必要的地质资料。地球物理公司能够提供物探采集、处理解释,甚至地球化学分析服务,钻探公司继而钻井、测井,获取更详细的第一手地层资料,确认该油田是否具有商业开采价值。进入实质性的开发阶段后,钻井公司会根据设计好的开发方案打井,地面建设公司会让一个油田初具规模,正式投产后采油公司会进行设备维护,并运用科学的开发方案尽可能提高石油产量。
❽ 石油有什么用途
石油产品可分为:石油燃料、石油溶剂与化工原料、 润滑剂、石蜡、石油沥青、石油焦等6类。 其中, 各种燃料产量最大, 约占总产量的90%; 各种润滑剂品种最多, 产量约占5%。 各国都制定了产品标准, 以适应生产和使用的需要。
汽油
是消耗量最大的品种。 汽油的沸点范围(又称馏程)为30 ~ 205°C, 密度为0.70~0.78克/厘米3,商品汽油按该油在汽缸中燃烧时抗爆震燃烧性能的优劣区分,标记为辛烷值70、80、90或更高。号俞大,性能俞好,汽油主要用作汽车、摩托车、快艇、直升飞机、农林用飞机的燃料。商品汽油中添加有添加剂(如抗爆剂四乙基铅)以改善使用和储存性能。受环保要求,今后将限制芳烃和铅的含量。
喷气燃料
主要供喷气式飞机使用。沸点范围为60~280℃或150~315℃(俗称航空汽油)。为适应高空低温高速飞行需要,这类油要求发热量大,在-50C不出现固体结晶。 煤油 沸点范围为180 ~ 310℃ 主要供照明、生活炊事用。要求火焰平稳、光亮而不冒黑烟。目前产量不大。
柴油
沸点范围有180~370℃和350~410℃两类。对石油及其加工产品,习惯上对沸点或沸点范围低的称为轻,相反成为重。故上述前者称为轻柴油,后者称为重柴油。商品柴油按凝固点分级,如10、-20等,表示低使用温度,柴油广泛用于大型车辆、船舰。由于高速柴油机(汽车用)比汽油机省油,柴油需求量增长速度大于汽油,一些小型汽车也改用柴油。对柴油质量要求是燃烧性能和流动性好。燃烧性能用十六烷值表示愈高愈好,大庆原油制成的柴油十六烷值可达68。高速柴油机用的轻柴油十六烷值为42~55,低速的在35以下。
燃料油
用作锅炉、轮船及工业炉的燃料。商品燃料油用粘度大小区分不同牌号。
石油溶剂
用于香精、油脂、试剂、橡胶加工、涂料工业做溶剂,或清洗仪器、仪表、机械零件。
润滑油
从石油制得的润滑油约占总润滑剂产量的95%以上。除润滑性能外,还具有冷却、密封、防腐、绝缘、清洗、传递能量的作用。产量最大的是内燃机油(占40%),其余为齿轮油、液压油、汽轮机油、电器绝缘油、压缩机油,合计占40%。商品润滑油按粘度分级,负荷大,速度低的机械用高粘度油,否则用低粘度油。炼油装置生产的是采取各种精制工艺制成的基础油,再加多种添加剂,因此具有专用功能,附加产值高。
润滑脂
俗称黄油,是润滑剂加稠化剂制成的固体或半流体,用于不宜使用润滑油的轴承、齿轮部位。
石蜡油
包括石蜡(占总消耗量的10%)、地蜡、石油脂等。石蜡主要做包装材料、化妆品原料及蜡制品,也可做为化工原料产脂肪酸(肥皂原料)。
石油沥青
主要供道路、建筑用。
石油焦
用于冶金(钢、铝)、化工(电石)行业做电极。
除上述石油商品外,各个炼油装置还得到一些在常温下是气体的产物,总称炼厂气,可直接做燃料或加压液化分出液化石油气,可做原料或化工原料。 炼油厂提供的化工原料品种很多,是有机化工产品的原料基地,各种油、炼厂气都可按不同生产目的、生产工艺选用。常压下的气态原料主要制乙烯、丙烯、合成氨、氢气、乙炔、碳黑。液态原料(液化石油气、轻汽油、轻柴油、重柴油)经裂解可制成发展石油化工所需的绝大部分基础原料(乙炔除外),是发展石油化工的基础。目前,原油因高温结焦严重,还不能直接生产基本有机原料。炼油厂还是苯、甲苯、二甲苯等重要芳烃的提供者。 最后应当指出,汽油、航空煤油、柴油中或多或少加有添加剂以改进使用、储存性能。各个炼油装置生产的产物都需按商品标准加入添加剂和不同装置的油进行调和方能作为商品使用。石油添加剂用量少,功效大,属化学合成的精细化工产品,是发展高档产品所必需的,应大力发展。
石油勘探
作者:宏亮
石油勘探,就是考证地质历史,研究地质规律,寻找石油天然气田。主要要经过四大步骤,即:确定古代的湖泊和海洋(古盆地)的范围;然后从中查出可能生成石油的深凹陷来;第三步是在可能生油的凹陷周围寻找有利于油气聚集的地质圈闭;最后对评价最好的圈闭进行钻探,查证是否有石油或天然气,并搞清它有多少储量。下面对这四个步骤的工作内容作一介绍。(具体的石油勘探技术方法后面有专题论述)
(一)确定古湖泊古海洋的范围
前面已经讲到了,石油是在古代的湖泊或海洋的沉积物中生成的,油田也是在这里形成的。因此,确定古湖古海(即古盆地)所在及其范围当属是首要的。
确定古湖古海的地质依据,主要是研究岩石和化石(古代保存在地层中的生物遗体或印模、痕迹等)。通过地质家们的研究,现在地球上的岩石种类极多,但最基本的可以分为三大类,一是火成岩(亦叫岩浆岩),它是由地球深部的岩浆喷发到浅处或地面后,凝固而成的。电视中曾多次报导过现代火山喷发的壮观场面,因此对这种岩石的来源与形成是好理解的。二是沉积岩,前面在油气形成问题时,已谈到了它的来源与形成过程了,它就是确定古湖古海最主要的物质依据。也就是说,哪里有沉积岩,哪里就是古代湖泊或海洋,这是毫无疑问的。三是变质岩,这主要是各种岩石(包括火成岩、沉积岩),在地壳的变迁过程中因经受高温高压而改变了原来的性质变成了既坚硬又致密的另一类岩石。
古湖泊和古海洋又怎样区别呢?这主要是通过化石来确定和区分的。因为湖泊与海洋的生物特征是大不一样的。另外,即使同样的沉积岩,湖泊和海洋岩石的物理化学性质也是不一样的。简单地说,是以当时水的咸淡来分的,淡水为湖,咸水为海……。
古湖古海的保存状况对找油找气的影响十分重要,在后来的地质变迁中,或遭受过风化剥蚀,造成残缺不全;或遭到火成岩的侵入破坏;或经过严重的变质过程等等,这些情况也都要通过对岩石性质和地层保存的完整程度等方面考证其发育过程。
(二)查明生油凹陷的位置
不论是湖盆或者海盆,面积都很大,一般也有上万平方公里,大如新疆的塔里木盆地,竟超过50万平方公里。盆底的形态也是凹凸不平,很不规则的,有高低,有深浅,较低的部分称之为凹陷,高的部位称之为凸起或隆起,一般水中的生物遗体比较容易富集在盆底的低处,所以凹陷是被认为盆地中有利于生油的部位,当然也是较深的为好,故在明确了盆地范围以后的第二步就是查明深凹陷的位置,也就是找出能够生成较多油气的地方。
(三)寻找地质圈闭
寻找地质圈闭是寻找油田的中心环节。任何一个找油部门对这一工作都是十分重视的。地质圈闭有大有小,有深有浅,形态各异。例如大庆油田的大庆长垣,其圈闭面积达千余平方公里,是迄今为止我国找到的最大储油圈闭。当然也有小到不足一个平方公里的,有的单独的含油圈闭只有一口油井。地质圈闭有的可以部分地露出地面,甚至一座高山即为一个完整的地质圈闭;有的埋藏很深,地表完全看不出来。现在我国有能力探测到的圈闭埋深,大约在五、六千米深左右,在这个深度以内,用人工地震的方法可以查得比较准确,钻井也能够得着。寻找圈闭自然也是一个由浅入深、由大到小的过程,对于深而小的圈闭,找到它当然是很困难的,它要求的技术精度、难度要比一般情况下高的多。
找到地质圈闭以后,还要对圈闭进行是否具备储油条件的研究和评价工作。一般来说,在靠近生油凹陷的地质圈闭,有利于油气运移进去,成为有希望的油田,而对其他地方的圈闭,评价就要低一些。再则各个圈闭本身的保存是否完整,可储藏油量的大小等情况也需要进行研究和评价。
(四)钻探油气田
对所找到的地质圈闭,里面是否储藏着石油或天然气,在没有对它进行钻井验证之前,一般是很难给以定论的。因此,对地质圈闭进行钻探,这是寻找油田的最后一个步骤,也是极其重要、极其关键的一个步骤。其重要性及关键性在于,这个步骤中所采取的一切技术和手段,它都关系到一个油田能否顺利诞生以及它的实际命运问题。
在油田发现史上有不少这样的情况:一个圈闭本来是充满了石油的,但因钻探技术及方法不当,而没有发现其中的油气,直到若干年后,人们再次认识,再次钻探时才证实是个油田;还有的在首次钻探中就发现了油层,但其中油气就是出不来或油气产量很低、结果评价为没有工业开采价值而弃置一旁,可是以后的重新钻探或经过一定的技术措施,又喷出了高产油气流。可见,钻探是发现油气田至关重要的一步,它与前面的工作关系,如同十月怀胎与一朝分娩那样,所以必须十分认真对待。
在盆地内或一个圈闭上第一口或第一批探井应该打在什么位置,这是要综合考虑多种资料以后才能确定的。其实,第一口井就找出油田来的可能性是比较小的,如新疆克拉玛依因为旁边有黑油山可以看得见,它就是第一号探井生油的。至于我国东部在复盖区找油田,就不那么容易了,大庆油田的第一口出油井是松基3井,说明在此以前至少已有了两口空井;胜利油田的第一口出油探井是华8井,说明在此之前曾经至少打了7口干井;大港油田是在打了近20口探井以后才发现的;任丘油田的第一口出油井是任4井,在它以前,曾经有5口以上的井落了空。当然,确定探井井位也不是无章可循、完全盲目的,简单而言,以找油为目的的探井(另有以探明地层为目的的井称之为基准井或参数井)总是尽可能定在圈闭的最高位置,其理由就是油和气总是浮在水的上面。这里的所谓"高"是指含油层的“高”。地质结构十分复杂,因而“高”也不是绝对的高,形象地比喻:如果要钻探的圈闭象个反扣着的碗或盆,第一口探井就定在拱起的碗或盆底上;如果这个圈闭象一条竖放着的大鱼,第一口井位就定在其脊背的高处;如果圈闭象一块倾斜的板(克拉玛依),探井就定在它的上方。也有极少的例外,比如一般人的头发都在头顶上最密,但秃顶者却在头部的周围才有头发,如果一定要在头顶去剪发,只会徒劳无益,新疆准噶尔盆地就有这样的实例,五十年代在其最高处打成了一口探井,一无所获,到了八十年代又在四周较低处打井,却出了油,用“秃顶”周围的头发来比喻,确有相似之处。也有确实在“盆底”找到油的,犹如炒菜的锅里放点油,它不可能停在锅沿上,这是因为这里的地层里几乎没有水,石油不占密度差的优势浮起来,只好“沉底”了,这种实例很少,所以“高处找油”仍然是首先应当遵循的准则。
当一个地质圈闭经钻探后,有一口井获得了有工业开采价值的油气流,这就算是找到了一个油田。但是,还必须进一步把这个油田的具体范围和出油能力搞清楚。因此,在钻探过程中发现油气之后,就应立即查清油层的层数、深度、厚度,并要搞清油层的岩性和其他物理性质,还要对油层进行油气生产能力的测试和原油性质的分析。然后再进行扩大钻探,进一步探明圈闭含油气情况,算出地下的油气储藏量有多少。这样,对单独个油田来说,它的初步勘探工作就算结束了。
最后这里还需加以说明的是,在实际寻找油田的工作中,这个步骤不可能绝然分开进行,而总是相互联系、交错进行的。找有利生油凹陷的过程中,往往也同时就找到了地质圈闭;在找地质圈闭过程中,也会发现新的沉积地层或新的生油凹陷;在钻探圈闭时,也会发现新的生油层和储集层,以致给人们增加许多新的认识。总的来说,寻找油田的过程,一方面是人们对地下情况不断积累资料、深化认识的过程,一方面又是找油技术不断进步的过程。