当前位置:首页 » 石油矿藏 » 土壤石油怎么做
扩展阅读
发行基金产品要多少钱 2024-11-30 00:14:49

土壤石油怎么做

发布时间: 2024-03-19 12:27:10

Ⅰ 怎样提高石油污染土壤修复

一般情况下的话,用一些细菌可以加快

微生物修复方法是利用细菌和真菌等微生物的代谢过程和工程技术将土壤中的污染物分解,从达到土壤修复的目的。其一般适用于低浓度污染场地的处理,主要的修复技术包括生物刺激、生物强化和生物通风。

希望我的回答对你有帮助

Ⅱ 土壤中石油污染物微生态修复原位试验研究

一、试验点的选择

野外试验的场地选择在陕西省延安市安塞县建华寺乡孟新庄延长采油公司杏2采油场,该井场水电畅通,并且有闲置厂房,属于延长石油公司杏子川采油区,距安塞县城30km(图6-9)。

图6-9 安塞杏子川杏2采油场位置图☆为杏2井位置

在试验过程中,水源是必需之物,一方面试验土层中要不断加入水,以便达到试验要求的最低含水量;另一方面测试样品时,需要水来稀释样品、刷洗器皿等。同时,试验中需要测试的土壤样品数庞大,若带回室内测试,不仅费时费工,而且需要运输,增加了试验的错误几率。本次试验进行了52d,试验场地需要长期的严格管理。

杏2井能满足上述条件,试验过程便于管理,省时省力。另外,该井场的采油井正在开采,便于试验原油的获取。

二、试验设计

1.优化菌群制剂的准备

首先将室内培养的菌群进行逐级放大培养,接种量按10%接种培养,降解石油细菌的富集组合培养基:

K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),可溶性淀粉(10.0g),CaCl2(0.02g),FeCl3(微量),蔗糖(2g),石油(1%~5%),水(1000mL),pH值(7.0)。121℃灭菌30min备用。

将需放大培养的菌液制剂按比例培养足够量,每次放大培养需要5~8d。最后在要出野外之前将培养好的菌液制剂存放于刷洗干净的25L大塑料桶,根据需要和可能用的量准备了3大桶,共计75L。在出野外前对大桶菌液进行显微镜检测,看菌群的生长及数量是否丰富。

2.实验器材

化学试剂:MgSO4·7H2O,NH4NO3,CaCl2,FeCl3,KH2PO4,K2HPO4,KCl,盐酸、酒石酸钾钠、石油醚、三氯甲烷等均为分析纯。

实验用石油为试验场地下2400m采出的原油。

实验用玻璃器皿等:150mL,250mL具塞三角瓶,125mL,1000mL磨口细口试剂瓶,50mL,25mL比色管50支一套各一套、橡胶塞、25L塑料桶,等等。

主要仪器:QZD-1型电磁振荡器、KQ218超声波清洗器、生物恒温培养箱、高速离心机、高压蒸汽灭菌器、无菌实验室、生化培养箱、摇床培养箱、莱卡生物显微镜、752N紫外可见光栅分光光度计、pHB-3型pH计、DDB-303A型电导率仪、电热干燥箱及各种化学分析用玻璃仪器。

3.测试方法

石油烃含量和NO3含量采用德方提供的超声波-紫外分光光度法,NH+4含量采用纳氏试剂比色法、pH值直接使用pHB-3型pH计,TDS用DDB-303A型电导率仪测得电导率换算得出。

4.试验小区的整理和基本物理参数的测试

试验前先对试验小区进行平整,将表层腐殖质层挖去,然后将分成8个试验小区:试验1区、试验2区、试验3区、试验4区、试验5区、试验6区、对照区、空白区等。各小区大小为120cm×120cm,各小区相间20cm,试验设计深度0~15cm,最后至50cm,小区由西向东排列,见试验区分布示意图6-10。

各试验区基本数据的采取:先将试验区表层人为填土除去以出露原地层土壤,原土壤岩性为黄土土壤,土中含有少量2~10mm的小砾石或小姜石,土壤湿容重为1.821g/cm3;自然含水量为9.18%;pH值为8.4;硝酸盐含量为55.3mg/kg;铵含量为8.85mg/kg;土壤本底石油含量为1.3~4.6mg/kg。

试验区土层重量的计算:120cm×120cm×15cm×1.82g/cm3=393120g=393.12kg。

5.试验步骤

因在试验阶段未能找到合适的石油污染场地,作为试验研究则选择了人为添加污染源的试验方法。原油的施加方法:将当地杏2井采出的原油脱水后,称取800g,用500mL分析纯石油醚稀释,均匀喷入试验区,每个试验区均加入基本相当的石油量。但每个区的石油含量不一定相同,只是大体差不多,以每区测试数据为准。

将均匀喷入原油的各试验区的试验土层,经多次翻动使加入的石油均匀混入试验层中。而后将各试验区准备好的试验添加材料逐个加入,1号试区的添加剂为粉碎的鲜茅草。2号试区为鸡粪与鸡粪土(各50%)。3号试区为谷糠、黍糠。4号试区为麦麸。5号试区除加原油外,接种菌液制剂和营养液。6号试区与5号试区相同,只不过是与1~4号一样均加盖农用塑料薄膜用于保温、保湿、防雨等。对照区仅加入原油,其他不加。空白区不加任何材料,仅作空白监测。上述试区加入添加剂后继续翻动试验土层使之土层混合均匀。

图6-10 陕西安塞杏子川杏2采油场试验区示意图

将培养好的菌液制剂,按各试区试验土层重的3%接种量接入,混合均匀。配制营养液,营养液的主要成分:MgSO4·7H2O,NH4NO3,CaCl2,FeCl3,KH2PO4,K2HPO4。配制比例以培养基成分配比为基准。

在上述准备好的试验区加入配制好的营养液30L,试验用水为当地浅层地下水,pH值为8.2,TDS含量为420.5mg/L。再加入约5L的地下水,使试验区试验土层含水量大概保持在20%以上(含水量的计算:菌液按3%计为约12kg,营养液30L,5L地下水,原土壤含水量为9.18%,共计含水量约为20.93%)。在试验区覆盖塑料薄膜用于保温、保湿、防雨等。在一定时间间隔取样,取样方法是在各区以梅花状取5个不同点的同一深度土样,而后充分混合后4分法取样测试。取样后翻耕试验区试验层使其暴气充氧,并补充一定水量保证试验土壤含水量在20%左右。对照区加入与试验区相同的石油量,其他不加,作为自然降解。空白区不加任何物质作为监控样品。各区同时取样测试,测试成分为石油量,pH值,土壤易溶盐,含水率,NH+4,NO3,等等。并同时监测地表及试验土壤温度。试验期完成后分别对各区试验层下部分层取样。

三、试验区试验过程及结果

(一)第1试验区

在上述试验区准备的基础上,按试验区试验层土壤重1.4%的比例混入剁碎长为1~3cm的鲜茅草,作为添加剂。随后将试验区土壤翻耕均匀,按培养基成分比例调控氮、磷、钙、镁、硫、铁等营养元素,用当地地下水控制试验土层含水量在20%左右。在试验区覆盖塑料薄膜用于保温、保湿、防雨等。一定时间间隔取样,取样方法是在该区以梅花状取5个不同点的同一深度(15cm)土样,而后充分混合后4分法取样测试。测试结果见表6-16~6-19,图6-11。

表6-16 试验1区与对照、空白区土壤中石油含量随时间变化测试结果

表6-17 试验1区土壤pH值,含水率(w)与TDS,NH+4,NO3含量随时间变化测试结果

表6-18 试验后1区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果石油含量TDS含量NH+含量NO

表6-19 试2区土壤中石油含量随时间变化测试结果

注:石油去除率计算以0~7d的平均石油含量为初始浓度(2318.5mg/kg)计算;第3天的数据代表性差略去。

图6-11 试1区土壤中石油随时间的去除率

1.微生态修复土壤中石油的去除率

由表6-16和图6-11可知:通过野外现场实验,得出微生态技术在土壤石油污染修复中是具有一定实效性的。试验区在试验初期0~7d加入的优化菌液并没有发挥作用,也就是说室内优化的菌液应用于野外时,经过了一个适应期或是细菌的延滞期(lag phase),本试验区适应期在7d左右。而后进入增殖期也是对数期(logarithmic phase)。图6-11显示在试验的第11天即适应期后5d去除率为40%以上,试验至32d时则去除率达80.32%。而对照区土壤的石油含量变化不大(除去两个异常低值基本在10%以内),说明自然条件下,土壤中石油降解是缓慢的。空白区反映了在没有加任何物质情况下土壤中的石油含量,但在试验后期可能是由于试验区和对照区与空白区相邻又加之降雨和人为取样活动污染了该区,造成含量有所增加。

2.土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

环境的pH值对微生物的生命活动有一定影响,它可引起细胞膜电荷的变化以及微生物体内酶的活性改变,从而影响微生物对营养物质的正常吸收。非正常的pH值使环境中营养物质的可利用性和有害物质的毒性改变。每一种微生物的生存都有一定的pH值范围和最适pH值。大多数细菌的最适pH值为6.5~7.5,放线菌pH值为7.5~8.0,真菌可以在广泛pH值范围内生长发育,如pH值在3以下或9以上仍能生长,而最适是在5~6。由表6-17的pH值监测可知,试1区因加入了一定量的磷酸盐缓冲剂使pH值保持在7.6~8.4之间,大多在8左右,而大部分石油降解菌最适环境为偏碱性。空白区、对照区pH值在8.1~8.9之间,比试验区略高一些。但在此pH值范围内对此次试验影响不大,试1区加入的磷酸盐主要是为微生物的生长增加营养元素。

水在微生物降解石油污染物过程中起着重要作用(媒质和氧源),因此,要使试验区土壤保证微生物生长繁殖的足够水量,一般保持在20%的含水率左右。在每次取样后加入约4%左右的水,表6-17数据显示试验层土壤含水量保持稳定,这为试验效果提供了基本保证。空白区为天然变化的含水量,对照区因取样后人为地翻耕可起到一定的保水作用,含水量略高于空白区,并没有对土壤石油降解起到明显促进作用。

营养元素是微生物细胞以及微生物体内生物酶的组成元素。微生物细胞的组成主要元素是C,H,O,N,P等,其中C,H来自有机物如石油污染物;氧来自水和空气及其他调控的氧源;而氮和磷及S,K,Ca,Mg,Fe等微量元素作为营养物质需要进行补充和调控。因此,我们对试验区土壤进行了N,P,S,K,Ca,Mg,Fe等元素的补充和调控,并利用当地鲜茅草(剁碎)作为添加剂补充其他生物元素和营养盐。表6-17为各区易溶盐,NH+4,NO3含量随试验过程的变化,从中可见试验区于8月21日补充了各种营养元素。随试验进行,微生物活动将石油和各类元素利用、降解、转化,土壤中含量逐渐减少。

3.试验过程对下层土壤的影响

从测试结果可见(表6-18),试验1区下部土层石油含量并没有明显地增加。与对照和空白区对比还有些降低,说明试验层土壤中石油没有向下扩散或是也被降解,氮、磷等易溶盐营养物质有一小部分随水而进入下部土层,该结果为今后修复工作中对含水率和易溶营养的要求和添加方法具有特别重要的指导意义。

(二)第2试验区试验结果

在上述试验准备的基础上,按试2区试验层土壤重4.3%的比例均匀混入鸡粪与鸡粪土各50%,作为添加剂。其他条件同试1区,试验结果见表6-19,图6-12。

图6-12 试2区微生态修复土壤中石油随时间的去除率

1.微生态修复土壤中石油的去除率

通过野外上述实验,试2区在试验初期0~7d加入的优化菌液同试1区一样,也就是说需要有一个适应期,该试验适应期在7d左右。而后进入增殖期,表6-19显示在试验的第11天即适应期后期去除率就达80%以上,此次样品采集因位置不同使样品测试结果略高。但在试验至16d时去除率也达68%以上,当试验至32d时则去除率达84.3%。

2.试验土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

试验区因加入了一定量的磷酸盐缓冲剂使pH值保持在7.3~8.1,而大部分石油降解菌最适环境为偏碱性,基本保证了微生物的正常生长。空白区、对照区pH值在8.1~8.9之间,比试验区高一些,但此pH值范围对试验影响不大。

试验层土壤含水量保持稳定,一般保持在20%左右,在每次取样后加入约4%的水,调控的含水率促进了细菌的降解,基本保证了试验效果。空白区为天然变化的含水率,对照区因每次取样后人为地翻耕可起到一定的保水作用,含水量略高于空白区。

表6-20为各区TDS,NH+4,NO3含量随试验过程的变化,反映出随试验进程微生物活动将石油和各类元素利用、降解、转化的过程。

表6-20 试2区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

3.试验过程对下层土壤的影响

表6-21是试验完成后对试2区及对照、空白区下部不同深度进行了石油,pH值,含水率(w),TDS,NH+4,NO3含量测试。从测试结果可见试2区试验层的下部土层石油含量并没有明显地增加,与对照和空白区对比相差不多。说明试验层土壤中石油没有向下扩散或是也被降解,从pH值,含水率(w),TDS,NH+4,NO3含量也可看出不同于对照区和空白区,也就是说氮、磷等易溶盐营养物质一部分随水而进入下部土层,但不影响试验结果。

表6-21 试验后各区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

(三)第3试验区

在试验区准备的基础上,按试验层土壤重1.4%的比例均匀混入谷糠、黍糠各50%的混合物,作为添加剂。其他条件同试1区,试验结果见表6-22,图6-13。

表6-22 第3试区土壤中石油含量随时间变化测试结果

注:石油去除率计算以0d的石油含量为初始浓度(1886.0mg/kg)计算。

图6-13 试3区微生态修复土壤中石油随时间的去除率

1.微生态修复土壤中石油的去除率

通过野外现场修复试验,可以认识和了解到地质微生态技术,在土壤石油污染原位修复是有效的。试3区在试验初期第3天加入的优化菌液已发挥作用,也就是说室内优化的原位土壤中的细菌应用于试3区时,适应期较短,在试3区适应期为1~2d,而后进入增殖期。试验的第3天即适应期后去除率就达62%以上,但第7天数据出现异常。在试验至11d时去除率为76%以上,当试验至21d时则去除率达80.62%,32d时为77.29%,11d后平均去除率为77.22%。试验结果显示第11天以后细菌进入稳定期,土壤中石油降解率减慢且相对稳定。

2.土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

表6-23 试3区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

3.试验过程对下层土壤的影响

表6-24是试验完成后对试验各区下部不同深度进行了石油含量,pH值,含水率(w),TDS,NH+4,NO3含量测试,从测试结果可见试验区试验层的下部土层石油含量略有增加。与对照和空白区对比增高的量并不是很大,说明试验层土壤中石油向下有部分的扩散。

表6-24 试验后试3区与下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

(四)第4试验区

在上述试验区准备的基础上,按试验区试验层土壤重2.5%的比例均匀混入麦麸,作为添加剂。其他条件同试1区,试验结果见表6-25。

1.微生态修复土壤中石油的去除率

由表6-25,图6-14可知:试验区在试验初期0~7d加入的优化菌液并没有发挥作用,在试验的第11天即适应期后5d去除率就达70%以上,试验至26d时最大去除率达88.11%,但从去除率看数据有些不太稳定,在69.52%~88.11%之间波动。其原因一是土壤石油含量不均,其次细菌作用、营养成分、添加剂的均匀程度等影响了数据的稳定性。但总的来说效果是显着的,平均去除率可达78.15%。

表6-25 试4区土壤中石油含量随时间变化测试结果

注:石油去除率计算以3d,7d的试验区平均石油含量为初始浓度计算;0d的数据可能取样不均等所至略去。

图6-14 试4区微生态修复土壤中石油随时间的去除率

2.土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

试验区pH值保持在6.6~9.0之间,大多在8以上,造成pH值降为6.6的原因,是添加剂刚刚加入后细菌发酵初期大量产酸造成。随后细菌的生长产碱则使环境变为偏碱性。

试验层土壤含水量基本保持稳定,一般在20%以上。实验对氨氮也进行了调控(表6-26)。

表6-26 试4区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

3.试验过程对下层土壤的影响

从表6-27可见试验区试验层的下部土层石油含量增加很少,与对照和空白区对比只是浅层略高,说明试验层土壤中石油没有向下扩散或是也被降解。从pH值,含水率(w),TDS,NH+4,NO3含量也可看出有别于对照区和空白区,也就是说氮、磷等易溶盐营养物质有一小部分随水而进入下部土层。

表6-27 试验后试4区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

(五)第5试验区

在试验区准备的基础上,将放大培养的菌液按试5区试验层重量的3%均匀接入试验区,随后按培养基成分比例调控氮、磷、钙、镁、硫、铁等营养液均匀加入,用当地地下水调控试验土层含水量在20%左右。在一定时间间隔取样,测试结果见表6-28、图6-15。

表6-28 试5区土壤中石油含量随时间变化测试结果

注:石油去除率计算以0d,7d的试验区平均石油含量为初始浓度计算;3d的数据可能取样不均等所至略去。

1.微生态修复土壤中石油的去除率

试5区的试验初期0~7d加入的优化菌液也没有发挥作用,也需要有一个适应期,该适应期也在7d左右,而后进入增殖期。在试验的第11天即适应期后5d去除率就达84.6%以上,试验至26d时最大去除率达88.99%,但从去除率看数据有些不太稳定,在64.84%~88.99%之间不等。该试验区未加添加剂,也未覆盖塑料薄膜,但去除效果仍较好,且平均去除率可达82.51%,说明调控措施也可行。

图6-15 试5区微生态修复土壤中石油随时间的去除率

2.土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

试5区pH值保持在7.7~8.5之间,大多在8以上,造成pH值降为7.7的原因,是刚刚添加磷酸盐类使其产生缓冲效果造成土壤pH值趋于中性。随后细菌的生长产碱和环境的作用则使环境变为偏碱性。水和氨氮含量调控稳定(表6-29)。

表6-29 试5区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

3.试验过程对下层土壤的影响

从表6-30可见试5区试验层的下部土层石油含量有所增加但较少,与对照和空白区对比高,说明试验层土壤中石油向下有些扩散。从pH值,含水率(w),TDS,NH+4,NO3含量也可看出有别于对照区和空白区,也就是说氮、磷等易溶盐营养物质也有一小部分随水而进入下部土层,就其原因是该区在整个试验过程中未加盖塑料薄膜,中间几次降水量较大使污染物及营养物质向下运移。

(六)第6试验小区试验结果

在试验区准备的基础上,培养的菌液按试6区试验层土重的3%均匀接入试6区,随后按培养基成分比例调控氮、磷、钙、镁、硫、铁等营养液均匀加入,用当地地下水调控试验土层含水量在20%左右。在试验区覆盖塑料薄膜用于保温、保湿、防雨等,在一定时间间隔取样,样品测试结果见表6-31,图6-16。

表6-30 试验后试5区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

1.微生态修复土壤中石油的去除率

试6区适应期也在7d左右,试验初期0~7d加入的优化菌液也是没有发挥作用。而后进入增殖期。在试验的第11天即适应期后5d去除率为90%以上,试验至32d时则去除率达81.88%,平均去除率为87.21%。

表6-31 试6区土壤中石油含量随时间变化测试结果

注:石油去除率计算以0d,7d的试验区平均石油含量为初始浓度计算;3d的数据可能取样不均等所至略去。

图6-16 试6区微生态修复土壤中石油随时间的去除率

2.土壤pH值,含水率(w),TDS,NH+4,NO3含量分析

由表6-32的pH值监测可知,试6区pH值保持在7.6~8.4之间,大多在8以上,造成pH值降为7.6的原因,也是在刚添加磷酸盐类后使其产生缓冲效果造成土壤pH值趋于中性。随后细菌的生长产碱和环境的作用则使环境变为偏碱性。

表6-32 试6区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

3.试验过程对下层土壤的影响

从测试结果可见(表6-33)试6区试验层的下部土层石油含量有所增加但较少,与试5区相比也少一些,因该试区做了覆盖塑料薄膜,减少了降水的影响,未加添加物也是原因之一。与对照和空白区相比高一些,说明试验层土壤中石油向下有些扩散。

表6-33 试验后试6区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

(七)对照区、空白区试验结果

在试验区准备的基础上,对照区只加原油,不加任何其他试验材料,而后翻耕多次使之混合均匀。空白区不加任何其他试验材料也不翻动。该两区与其他试区同时在一定时间间隔取样,取样方法与试验区相同:以梅花状取5个不同点的同一深度土样(15cm),而后充分混合后4分法取样测试。测试成分为石油含量,pH值,含水率(w),TDS,NH+4,NO3含量等。试验期完成后分别对各区试验层下部分层取样。取样结果见表6-34~6-36。

表6-34 对照区土壤中石油含量随时间变化测试结果单位:mg·kg-1

表6-35 对照、空白区土壤pH值,含水率(w),TDS,NH+4,NO3含量随时间变化测试结果

表6-36 试验后对照、空白区下部土壤中石油含量,pH值,含水率(w),TDS,NH+4,NO3含量随深度变化测试结果

通过野外原位试验得出在试验期内,对照区土壤的石油含量变化不大,除去两个异常低值(基本在10%左右,最大为13.3%)。显示出在自然条件下短时间内土壤中石油降解是缓慢的,16d,21d的测试数据可能土壤中含量不均所致,也反映了土壤物质成分的不均一性和复杂性。空白区反映了在没有加任何物质情况下土壤中的石油含量,但在试验后期因试验区和对照区与空白区相邻又加之降雨和人为取样污染了该区,造成含量有所增加。其他成分的变化基本是在天然条件下随降水的变化而变的。

四、试验讨论与结论

1.土壤中石油的去除率

从表6-37可见,大部分试验区在试验初期0~7d加入的优化菌液并没有发挥作用,也就是说室内优化的菌液应用于野外时,需要有一个适应期或是细菌的延滞期(lagphase),本次试验大部分试区的适应期基本在7d左右。而后进入增殖期也是对数期(logarithmic phase),表6-37显示在试验的第11天即适应期后去除率就达40%以上。只有试3区的试验有点区别,该区细菌的适应期较短,为3~4d。从整个试验过程和测试结果看,试验效果显着,但有些数据因采样位置和土壤不均匀性使测试结果偏低或偏高。但在试验至16d时去除率也达68%以上,当然每个试区因试验条件不同结果有些差别。总体来看,每个试区最大去除率均在80%以上。而对照区土壤中的石油含量变化不大,除去两个异常低值基本在10%左右,表明在自然条件下短时间内土壤中石油降解是缓慢的,16、21d的测试数据可能显示土壤中含量不均所致,也反映了土壤物质成分的不均一性和复杂性。空白区反映了在没有加任何物质情况下土壤中的石油含量,但在试验后期因试验区和对照区与空白区相邻又加之降雨和人为取样污染了该区,造成含量有所增加。

表6-37 杏子川油田杏2采油井场原位微生态修复土壤中石油随时间的降解率单位:%

2.微生态修复技术的控制因素

微生态修复技术是充分优化利用原位微生物菌群辅以物理和化学方法并与地质环境相结合的,以微观效应改变宏观环境的原位修复技术。应用该技术的关键是微生物和地质环境的相互结合、相互依存、相互作用和调控。调控因素主要有温度、水、氧气、营养元素、地质环境的改善等,用于促进元素的转化,降解有毒、有害物质,在原位对环境污染的治理与修复。

(1)土壤温度的调控

温度是影响微生物生长与存活的重要因素之一,微生物的活动强度、生化作用都与此相关。试验区优化的微生物菌群大多为中温微生物(13~45℃),25~38℃为最适生长温度。通过监测试验阶段地表的最高和最低温度显示,空白区是地表的自然最高和最低温度,该地区地表最高温度在8月下旬至9月上旬大多为25℃以上,但最低温度均小于20℃,昼夜温差大。如何调控温度,是试验效果好坏的关键。因此,我们在试验区用农用塑料薄膜进行保温,进入9月后因气温明显下降夜晚再用草帘覆盖。从调控效果看试验区土壤在试验层15cm深,温度明显增加,比空白区增高5~8℃以上,尤其是在9月上旬以前增温保温效果显着。但随着温度的下降土壤中石油的去除率也在降低。通过此次试验及温度的监测,我们也可得出在该地区开展微生态修复技术的最佳温度时期应在每年的6月下旬至9月上旬,通过调控可使土壤温度保持在25℃以上,能保证微生物细菌的活力和繁殖力。

(2)土壤中氧的调控

氧的供应成为微生物细菌降解有机物过程的重要调控因子之一。本次试验主要从4个方面对土壤氧的供给进行了调控,首先是充分翻耕试验土壤层并且在每次取样后均要翻耕试验层,使其充分与大气混合。其次是保证试验土壤具有一定的含水量,使含水量保持在20%左右,获得水中提供的氧。另外是部分试验区利用添加物,如鲜草、鸡粪、谷糠、麦麸等,该类添加剂不仅廉价易取,并能为土壤补充营养素,而且对试验层土壤进行了改良,增大了蓬松性和通透性,使空气中的氧容易进入。加入的含氧营养物质K2HPO4,KH2PO4,MgSO4·7H2O,NH4NO3,NO3等不仅增加氮、磷、镁等,也是氧的来源之一。上述调控措施为微生物降解土壤中的石油提供了充分的氧源,保证了微生物细菌在降解土壤中石油所需要的氧气。

3.野外原位修复试验结论

从整个试验过程和方法上可得出如下主要结论:

1)通过对陕北杏子川黄土区石油开采所造成石油污染土壤,原位微生态修复方法的试验研究,利用优化原位微生物菌群辅以物理和化学方法与地质环境相结合的微生态技术,进行了试验区土壤温度、水、氧气、营养元素、地质环境因素等的调控,对土壤中石油的降解与修复试验,试验结果显示,土壤中平均石油含量在2000mg/kg以上,经过11~32d原位微生态修复技术的修复,土壤中石油含量去除率可达40%~80%以上,验证了地质微生态修复技术在杏子川黄土区土壤石油污染修复的有效性、科学性、生态性,探索了推广应用的可行性。

2)得出在该地区利用微生态修复技术的最佳温度季节应在每年的6月下旬至9月上旬,通过调控可使土壤温度保持在25℃以上,能保证微生物细菌的活力和繁殖力温度需要。

3)验证了本次试验调控添加的营养元素和对土壤环境的改善是比较适度的,方法是可行的。

该试验过程验证了原位微生态修复技术在野外原位土壤石油污染修复试验效果是显着的,方法也是可行的,具有处理方法简单、费用低、修复效果好、对环境影响小、无二次污染、可原位治理等优点。虽然是试验研究,用于野外大面积修复还有待完善,但通过不断努力是可以实现的。它不仅可以在原位有效地修复土壤、包气带和阻控地下水的石油污染,而且还可以增加土壤的肥力,改善土壤环境,尚无负面作用,对修复污染的土壤和农作物增产都具有重要意义,也是从根本上修复和治理土壤石油大面积污染的有效方法之一,具有一定的推广应用作用。

Ⅲ 宅基地被原油污染怎么办

(一)土壤石油污染治理
2O世纪8O年代以前.治理石油烃污染土壤还仅限于物理和化学方法,即热处理和化学浸出法.热处理法是通过焚烧或煅烧,可净化土壤中大部分有机污染物.但同时亦破坏土壤结构和组分,且价格昂贵而很难实施.化学浸出和水洗也可以获得较好的除油效果.但所用的化学试剂的二次污染问题限制了其应用.早在2O世纪7O年代.为了解决输油管线和储油罐发生故障漏油和溢油时土壤被石油污染的问题,美国埃索研究和工程公司就已经开始寻找清洁的生物解决方法,并且其实验室研究找到一种有效的“细菌播种法 ,开了生物修复石油污染土壤先河.上世纪8O年代以来,污染土壤的生物修复技术越来越引起人们的关注.生物修复技术也取得了很大进步,正在逐渐成熟.
生物修复是利用生物的生命代谢活动减少土壤环境中有毒有害物的浓度,使污染土壤恢复到健康状态的过程.目前,治理石油烃类污染土壤的生物修复技术主要有两类:一类是微生物修复技术,按修复的地点又可分为原位生物修复和异位生物修复;另一类是植物修复法.
1.微生物修复技术
(1)原位生物修复技术
原位处理方法是将受污染土壤在原地处理.处理期间.土壤基本不被搅动,最常见的就地处理方式是土壤的水饱和区进行生物降解.除了要加人营养盐,氧源(多为H202)外:还需引入微生物以提高生物降解的能力.有时,在污染区挖一组井.并直接注入适当的溶液,这样就可以把水中的微生物引入到土壤中.地下水经过一些处理后,可以恢复和再循环使用,在地下水循环使用前,还可以/JnA+壤改良剂.
污染土壤经过处理,所有多环芳烃的降解都很明显,但是.三环和多环芳烃的降解率一般明显低于60%.因为就地处理对温度较敏感.所以只能在气温大于8℃的月份进行.在一定的时间内.原位处理不可能有效地去除大多数多环芳烃,而且这种方法因受温度和土壤类型的影响而具有一定的局限性.
(2)异位生物修复技术
异位生物修复主要包括现场处理法、预制床法、堆制处理法、生物反应器和厌氧生物处理法.
a.现场处理法
近年来国外石油烃污染生物处理的研究很多,其中土壤耕作处理是现场处理土壤污染常用的方法.被污染的废物施在土壤上.通过施肥、灌溉和加石灰等管理措施,保持氧气、水分和pH的最合适值,并进行耕作以改善土壤的通气状况,确保在污染废物和下面土层中污染物的降解.降解过程所用的微生物多为土着微生物.但是要提高效果还需要引入驯化的微生物.
b.预制床法
现场处理中土壤耕作处理最大的缺陷是污染物可能从处理区迁移.预制床的设计可以使污染物的迁移量减至最小,因为它具有滤液收集和控制排放系统.预制床的底面为渗透性低的物质,如高密度的聚乙烯或粘土.将污染土壤转移到预制床上,通过施肥、灌溉,调节pH,有时还加入微生物和表面活性剂,使其最适合污染物的降解.与同一区域的原位处理技术相比,预制床处理对三环和三环以上的多环芳烃的降解率明显提高.
c.堆制处理法
土壤的堆制处理就是将受污染的土壤从污染地区挖掘起来,防止污染物向地下水或更大的地域扩散.运输到一个经过处理的地点(布置防止渗漏底,通风管道等)堆放,形成上升的斜坡,并进行生物处理.堆制法是生物修复技术中的一种新型替代技术.堆制处理过程对污染土壤中的多环芳烃降解,多环芳烃的降解随着苯环数的增加而降低.当多环芳烃的初始浓度提高约5O倍时,除荧、蒽外,其他多环芳烃的降解随着污染浓度的提高而降低.
d.生物反应器法
生物反应器法是将污染土壤置于一专门的反应器中处理.生物反应器一般建在现场或特定的处理区.通常为卧鼓形和升降机形,有间隙式和连续式两种.因为反应器可使土壤与微生物及其他添加物如营养盐,表面活性剂等彻底混合,能很好的控制降解条件,因而处理速度快,效果好.生物反应器处理的过程为:先挖出土壤与水混合为泥浆,然后转入反应器.为了提高降解速率,常在反应器先前处理的土壤中分离出已被驯化的微生物,并将其加入到准备处理的土壤中.
e.厌氧生物修复法
修复受石油烃污染土壤的研究已开发了生物堆层、堆肥及土壤泥浆反应器等好氧修复工艺,但分离获得某些降解菌时.一些降解菌伴有产生高生态风险的产物.最近的研究表明以厌氧还原脱氯为特征的厌氧微生物修复技术有很大的潜力.
(2)植物修复技术
目前,对土壤有机污染的生物修复研究较多,但是,多集中在微生物作用上.事实上,植物对污染物的去除起着直接和间接的重要作用.植物生物修复是利用植物体内对某些污染物的积累、植物代谢过程对某些污染物的转化和矿化,植物根圈与根茎的共生关系增加微生物的活性的特点.加速土壤污染物降解速度的过程.
植物修复的方式包括植物提取、植物降解和植物稳定化三种.植物提取是指利用植物吸收积累污染物,待收获后才进行处理.收获可以进行热处理,微生物处理和化学处理.植物降解是利用植物及相关微生物区系将污染物转化为无毒物质.植物稳定化是指植物在同土壤的共同作用下.将污染物固定,以减少其对生物与环境的危害.植物根际使土壤环境发生变化,起到了改善和调节作用,从而有利于污染物的降解.因此通过选择适当植物和调控土壤条件等手段.可以实现污染土壤的快速修复.
植物生物修复是一项利用太阳能动力的处理系统.具有处理费用低,减少场地破坏等优点而受到普遍重视.据美国实践,种植管理的费用在每公顷200~1000美元之间.即每年每立方米的处理费为0.02~1.00美元.比物理化学处理的费用低几个数量级.
(二)水体石油污染治理
水体石油污染和土壤治理不同,水具有流动性,不及时处理会使污染范围以很快的速度不断扩大.因此.水体石油污染首先是控制污染然后再对污染水进行处理.
(1)海洋、江河、湖泊水体治理
水体石油污染治理对海洋、江河、湖泊石油污染治理,目前仅限于化学破乳、氧化处理方法进行分解处理和机械物理的方法进行净化吸附.清除海洋、江河、湖泊石油污染是非常困难的.防止油水合二为一的唯一选择是喷洒清除剂,因为只有化学药剂才能使原油加速分解,形成能消散于水中的微小球状物.清除水面石油污染还有一些物理方法,如用抽吸机吸油,用水栅和撤沫器刮油,用油缆阻挡石油扩散.英国有一位农场主发明了一种用机编禾草排治理石油污染的方法,不仅能防止石油在海中扩散,而且能吸收比自身质量多15倍的石油,可防止油轮流出的石油污染水岸,禾草中又以大麦秸秆治污最为有效.1992年,一艘油轮在舍德兰群岛附近失事后,在海上放置了22千米长的禾草排,从而保护了海滨浴场和渔场不致遭受污染.而俄罗斯莫斯科精细化工科学院的教授奥列格.乔姆金研制出了用农作物废料清除石油污染的全新方法.演示实验中,乔姆金在一盆水中挤了几滴重油,水盆中顿时漂起了一层薄薄的油花.紧接着乔姆金向水盆中撒人了一小撮稻米壳,几分钟后水盆中的油迹开始减少,二小时后水盆中的油迹完全消失了.
而对收集上来的污水以及石油工厂排出来的石油污水采用生物处理法.生物处理法也称生化处理法.生物处理法是处理废水中应用最久、最广和相当有效的一种方法.它是利用自然界存在的各种微生物,将废水中有机物进行降解,达到废水净化的目的.
(2)地下水体治理 天猫美国普卫欣提示:雾霾天气出行记得做好防护。
对地下水石油污染治理,采用水动力学方法,通过抽水井或注水井控制流场,可以防止石油和石油化工产品污染的进一步扩大,同时对抽取出来的受污染的地下水进行处理.
近年来.臭氧氧化技术对石油污染的地下水处理取得了很大进展.经臭氧氧化反应后,水体中有机物种类增加,经过一定时间接触氧化反应后,苯系物和稠环芳烃类在水中的相对含量有较大幅度下降,但酯、醛、酮类和烷烃类在水中的相对含量却大幅上升.一般认为,水中芳香烃物质危害性较大,多具有较大的毒性和致癌性,而烷烃、酯类和其他低分子物质的危害性小得多.由上我们可以看出.臭氧氧化法是把危害性大的污染物转化为危害小的污染物.污染水体没有得到根本治理,因此臭氧氧化法与吹脱、活性炭吸附、生物氧化等处理方法配合使用,才能得到良好的处理效果.
(三)空气石油污染治理
石油对空气的污染仅限于其所含的具有挥发性的物质以及轻质石油产品了,而不像对于土壤和水体,石油中的粘稠胶体可以在这两者中成片成块的形成时间很长的污染.虽然如此,石油产品对空气的污染是非常严重的,对空气相对于水体更具有流动和扩散性,治理更加困难.到目前为止,对于石油产品对空气污染还没有一种很好的治理方法,局限于采用控制油气排放等措施,如制定汽车尾气排放标准等.而具体的污染治理方法还有待于人类进行探讨和研究.

Ⅳ 土壤、地下水中石油污染物微生态修复室内模拟实验研究

通过对研究区土壤、地下水中降解石油菌进行分离和筛选,并进行强化土壤、地下水中石油污染的微生态修复实验,优化最佳修复方法和实施技术,为野外原位实际修复试验提供方法与技术。

一、实验器材、测试方法和实验步骤

1.实验材料

化学试剂:MgSO4·7H2O,NH4NO3,CaCl2,FeCl3,KH2PO4,K2HPO4,KCl,(NH4)2SO4,CaCO3,NaCl,可溶性淀粉、蔗糖、乳酸、盐酸、酒石酸钾钠、琼脂、液体石蜡、石油醚、三氯甲烷等均为分析纯。杏子川油田原油(地下2400m采出的原油)、新鲜马铃薯、地下水、杏子川油田区黄土土样,等等。

添加剂:草坪草晾干粉碎(5~10mm),等等。

实验用土壤样品采自陕西省延安市南约5km210国道边,山坡上修路的剖面上为黄土土壤,采样时剖开表层约25cm的表层土,取里面新鲜土壤,为无石油污染样品。土中含有少量2~5mm的小姜石,土壤湿容重为1.7~1.93g/cm3;土壤干容重为1.49~1.7g/cm3。自然含水量为9.46%,pH值为8.1;试验用地下水,pH值为7.2,TDS含量为370mg/L。

2.实验器具

实验用玻璃器皿等:150mL,250mL具塞三角瓶,125mL,1000mL磨口细口试剂瓶,各种不同类型的细菌培养试管、培养皿、橡胶塞。

主要仪器:QZD-1型电磁振荡器、KQ218超声波清洗器、生物恒温培养箱、高速离心机、高压蒸汽灭菌器、无菌实验室、生化培养箱、摇床培养箱、莱卡生物显微镜、752N紫外可见光栅分光光度计、电热干燥箱及各种化学分析用玻璃仪器。

3.测试方法

本次实验测试方法是外方合作者德国蒂宾根大学应用地质中心提供的超声—紫外分光光度法,该方法操作简单,灵敏度高,准确。

4.实验步骤

根据上述实验和选出的降解石油污染的优势菌群,利用不同的培养基对所选出的各类菌群进行培养并放大培养。各类菌群培养3~5d后进行混合培养,继续培养3~7d后做相应的石油烃降解实验,并进行模拟不同条件下的地下水、土壤石油污染的微生态修复实验。实验装置150mL三角瓶和250mL具塞三角瓶。

地下水石油污染微生态降解模拟实验,用150mL三角瓶每个瓶中加入20mL地下水配制的无菌培养液,加入一定量的原油,接入3mL培养好的菌液,用棉塞封口但要透气,按不同温度条件进行实验,一定的间隔时间取出一瓶样品,分析石油的降解去除的含量。并作无菌对照,按一定时间取样测试石油的变化。

土壤石油污染微生态降解模拟实验,用若干(按实验设计的数量)250mL具塞三角瓶每个瓶中加入10g无菌风干土壤加入5mL营养液,加入一定量的原油,接入3mL培养好的菌液,按不同温度条件进行实验,一定的间隔时间取出一瓶样品,分析土壤中石油的降解去除的含量。同时作同等条件无菌对照,按一定时间取样测试石油的变化。第一批次实验用棉塞,但时间一长则蒸发量大,实验样品干燥影响实验效果,后改为具塞三角瓶,以保证有足够的含水量。在第二次实验中为增强细菌的作用利用草坪草晾干粉碎作为添加剂,该添加剂有两个主要作用:一是改良土壤的膨松剂;另一是以细菌作为营养素的来源。在一定时间取样测试石油含量的变化。

二、石油污染地下水微生态细菌降解的模拟实验

为了实验的准确性,实验分两批次进行,第二批次是在第一批次改进的基础上进行,主要考虑到地下水中温度对实验效果的影响。

1.第一批次地下水降解实验

实验是在2007年3月30日至4月27日进行的。实验选择了相对较低的温度:25℃,20℃,15℃。实验结果见表6-8、6-9。

通过上述数据,说明实验取得了初步成功,也验证了微生态技术在地下水石油污染修复中的作用。表6-8、6-9,图6-1显示,由于模拟实验温度的不同导致实验效果不同。在选择的3个温度中,20℃的实验效果要好于15℃和25℃的实验效果,25℃的实验效果要优于15℃的效果。但总的来说,实验效果不是十分理想,实验在第27天时最大去除率仅为41%左右。对照样品中的石油含量变化不大,基本在5%以内,说明在同等温度无菌条件下短时间内地下水中石油降解是缓慢的。

表6-8 第一批次石油污染地下水细菌降解石油含量随时间变化测试结果

表6-9 第一批次石油污染地下水细菌降解石油含量随时间降解率变化结果单位:%

图6-1 第一批次地下水石油污染不同温度条件石油随时间降解率趋势图

2.第二批次地下水降解实验

第二批次地下水降解实验,是在2007年6月21日至8月6日进行的。根据第一次实验结果,又选择了相对高一点的温度进行实验,温度为35℃,30℃,25℃,20℃。实验温度升高而且实验时间延长。另外,为了验证实验效果的好坏,每一温度条件同时做一平行实验。实验结果见表6-10、6-11,图6-2~6-4。

表6-10 第二批次石油污染地下水细菌降解石油含量随时间变化测试结果

表6-11 第二批次石油污染地下水细菌降解石油含量随时间降解率结果单位:%

图6-2 第二批次地下水石油污染35℃微生态修复实验石油随时间降解率图

图6-3 第二批次地下水石油污染30℃微生态修复实验石油随时间降解率图

图6-4 第二批次地下水石油污染25℃微生态修复实验石油随时间降解率图

通过上述实验,进一步验证了微生态细菌在地下水石油污染中的修复作用。在选择的4个温度中,30℃的实验效果要好于35℃,25℃和20℃的实验效果,实验在第37天时最大去除率达90%以上。其他温度条件的实验效果基本相同,在30d时石油的去除率为50%左右。在同等条件的平行实验效果也基本一致,得到了相互验证的效果,验证了实验数据的可靠性。

3.两批次实验结果对比

通过上述两批次的室内模拟石油污染地下水微生态细菌的降解实验,实验结果得出第一批次石油污染地下水细菌降解石油的模拟实验显示,实验效果不是十分理想,20℃实验在第27天时最大去除率仅为41%左右。但对照样品中的石油含量变化不大,从实验数据看基本在5%以内,说明在同等温度无菌条件下短时间内地下水中石油降解是缓慢的。第二批次实验结果,则进一步验证了微生物细菌在地下水石油污染的修复技术是有较好的修复作用。在选择的4个温度中,30℃的实验效果要好于35℃和25℃,20℃的实验效果。30℃实验在第37天时最大去除率达90%以上。其他温度条件的实验效果基本相同,在30d时石油的去除率为50%左右。在同等条件下的平行实验效果也基本一致,得到了相互验证的效果,说明实验数据的可靠性。

三、石油污染黄土土壤微生态细菌降解修复的模拟试验

为了验证实验的效果和准确性,该实验也分两批次进行,第二批次相对第一批次加入了一组相对高一点的温度。

1.第一批次土壤降解实验

实验是在2007年3月30日至5月14日进行的。考虑研究区地表土壤在春、夏、秋温度一般在20~30℃之间,选择了不同的温度段进行实验。温度为30℃,25℃,20℃,以及不同的石油含量进行实验,并在30℃,25℃两个温度选择了平行实验。实验结果见表6-12、6-13和图6-5~6-7。

表6-12 第一批次石油污染土壤细菌降解石油含量随时间变化测试结果

表6-13 第一批次石油污染土壤细菌降解石油含量随时间降解率结果单位:%

虽然模拟实验温度不同,但实验效果基本相同,实验在第45天时去除率都在80%左右。对照样品中的石油含量变化不大,基本在10%以内,说明在相同温度无菌条件下短时间内土壤中石油降解是缓慢的。

图6-5 第一批次土壤石油污染30℃微生态修复实验石油随时间降解率图

图6-6 一批次土壤石油污染25℃微生态修复实验石油随时间降解率图

图6-7 一批次土壤石油污染20℃微生态修复实验石油随时间降解率图

2.第二批次土壤修复模拟实验

实验进行于2007年6月21日至8月6日。实验选择了相对高一点的温度进行,实验温度为35℃,30℃。利用草坪草(晾干粉碎)作为添加剂,添加量为5%。每一温度条件同时做一平行实验。实验结果见表6-14、6-15,图6-8。

表6-14 二批次石油污染土壤细菌降解石油含量随时间变化测试结果

表6-15 第二批次石油污染土壤细菌降解石油含量随时间降解率结果单位:%

图6-8 第二批次土壤石油污染30℃微生态修复实验石油随时间降解率图

第二批次石油污染土壤细菌降解的模拟实验显示,微生态技术在土壤石油污染的修复中效果良好。虽然模拟实验选择了2个温度,但实验效果基本相同。利用草坪草晾干粉碎作为添加剂,起到了一定的作用,使第二次实验短时间内得到了理想的效果。

3.两批次实验结果对比

通过上述两批次的室内模拟石油污染土壤微生态细菌的降解实验,实验结果得出第一批次石油污染土壤细菌降解石油的模拟实验显示,微生物细菌在土壤石油污染的修复是有较好的降解作用。表6-12、6-13,图6-5~6-7显示,虽然模拟实验温度不同,但选择的3个温度为20℃,25℃,30℃的实验效果基本相同。实验在第45天时去除率都在80%左右。有的达85%以上。对照样品中的石油含量变化不大,从实验数据看基本在10%以内,说明在同等温度无菌条件下短时间内土壤中石油降解是缓慢的。第二批次模拟实验显示,微生物修复确有较好的降解作用。表6-14、6-15,图6-8显示,虽然第二次模拟实验选择了2个温度,但35℃,30℃的实验效果基本相同。实验在第30天时去除率都在85%左右,有的达85%以上。利用草坪草晾干粉碎作为添加剂,起到了一定的作用,使第二次实验时间虽短于第一次时间却增大了去除率,增大5%以上。在同等条件下的平行实验效果也基本一致,得到了相互验证的效果。

四、实验结果与讨论

通过两批次的室内模拟石油污染地下水微生态细菌的降解实验,实验结果显示第一批次石油污染地下水细菌降解石油的模拟实验,实验效果不是十分理想,20℃实验在第27天时最大去除率仅为41%左右。第二批次实验结果,则进一步验证了微生物细菌在地下水石油污染的修复具有一定的修复作用。在选择的4个温度中,30℃的实验效果要好于35℃和25℃,20℃的实验效果。30℃实验在第37天时最大去除率达90%以上。其他温度条件的实验效果基本相同,在30d时石油的去除率为50%左右。在同等条件下的平行实验效果也基本一致,得到了相互验证的效果,说明实验数据的可靠性。对照样品中的石油含量变化不大,从实验数据看基本在5%以内,说明在同等温度无菌条件下短时间内地下水中石油降解是缓慢的。

通过两批次的室内模拟石油污染土壤微生态细菌的降解实验,实验结果显示第一批次石油污染土壤细菌修复具有较好的修复作用。表6-12、6-13,图6-5~6-7显示,虽然模拟实验温度不同,但选择的3个温度为20℃,25℃,30℃的实验效果基本相同。实验在第45天时去除率都在80%左右。有的达85%以上。对照样品中的石油含量变化不大,从实验数据看基本在10%以内,说明在同等温度无菌条件下短时间内土壤中石油降解是缓慢的。第二批次模拟实验显示,微生态对土壤的石油污染治理修复确有较好的降解作用。表6-14、6-15,图6-8显示,虽然第二次模拟实验选择了2个温度,但35℃,30℃的实验效果基本相同。实验在第30天时去除率都在85%左右,有的达85%以上。利用草坪草晾干粉碎作为添加剂,起到了一定的作用,使第二次实验时间虽短于第一次时间却增大了去除率,增大5%以上。在同等条件下的平行实验效果也基本一致,得到了相互验证的效果。

上述室内模拟实验取得了一定的效果,为野外原位试验积累了经验,奠定了基础,提供了技术。

Ⅳ 哪里有土壤中石油烃检测环境标准方法

在满足油品质量规格要求的前提下,多使用低成本的原料,最缓和的加工条件,尽量降低高附加值组分的用量等。
要想实现这些目标要求,必须要有相应的石油产品分析仪器与之匹配。
挑选像得利特公司这种金牌厂家生产的石油分析烃检测检测仪器,有国家标准认证。

Ⅵ 如何修复被石油污染的土壤

物理、化学、生物的方法都可以。如果浓度高,可以选用理化的方法,将土取走,将石油提出来;如果浓度不高,最好用生物修复的方法。生物的方法的很多优势是理化方法难于达到的。

Ⅶ 人类在治理石油污染土壤方面有哪些方法

在20世纪80年代以前,人类在治理石油污染土壤方面只采用物理和化学方法,即热处理和化学浸出法。热处理法就是通过焚烧或煅烧土壤,来净化土壤中大部分有机污染物。但会破坏土壤的结构和组分,且价格昂贵。化学浸出和水洗也可以获得较好的除油效果。但会产生二次污染问题,因此这种方法也受到了极大的限制。20世纪70年代,美国埃索研究工程公司首创生物修复石油污染土壤的办法,就是利用生物的代谢活动来减少土壤环境中有毒有害物的浓度,使污染土壤恢复健康状态的过程。