当前位置:首页 » 石油矿藏 » 什么生物吃石油最好
扩展阅读
石油资源分布受什么制约 2025-01-23 20:52:55

什么生物吃石油最好

发布时间: 2024-04-08 19:29:06

A. 我国科学家研究发现吃石油产甲烷的微生物,这种微生物有什么特点

在我国发现的能够通过吃掉石油而排出甲烷的微生物年龄较大,超过35亿岁,它能够通过自身的代谢过程,将吃进去的石油转化为甲烷和二氧化碳两种气体,是一种成本低、效益高的甲烷生产途径。

三、吃石油的微生物的价值

众所周知,沼气的主要成分就是甲烷,沼气是一种清洁能源,但是目前在农村使用的沼气,主要是通过建设发酵池,然后将生产原料放入发酵池中,经过化学反应,产生甲烷类气体,用于照明等需要。但是这种方法占地面积比较大,在清理甲烷的时候也容易导致工作者中毒,因此影响了其推广应用。利用能吃石油的甲烷生产沼气以后,就可以消除这种弊端。将石油转化为甲烷,为人们的生产生活提供能量,还能够避免出现直接使用石油所产生的生态环境破坏问题。另外,在一些资源已经接近枯竭的油田中,使用这种微生物,可以对资源进行最大化的利用。

B. 真有喜欢吃石油的微生物或细菌吗

有的。有许多种微生物能够以石油等烃类物质为碳源生长繁殖,把石油等物质分解掉,从而可用于海上和陆地的石油等物质污染治理。
据目前的研究, 能降解石油的微生物有70个属, 其中28个属细菌, 30个属丝状真菌, 12个属酵母, 共200多种微生物。海洋中最主要的降解细菌有:无色杆菌属(Achromobacter)、不动杆菌属 (Acinetobacter)、产碱杆菌属(Alcaligenes)等; 真菌中有金色担子菌属(Aureobasidium)、假丝酵母属(Candida)等。
石油降解菌通常生长在油水界面上, 而不是油液中。有实验证明, 胶州湾的石油降解菌在表层水体中的最高值可达 4.6× 10^2个/mL。 石油降解菌数量仅与海水的石油污染情况有关。石油降解微生物的种类和数量对海洋中石油的降解有明显的影响。一般情况下, 混合培养的微生物对石油的降解比纯培养的微生物快。

C. 油田区环境微生态效应及优势菌种的选择

一、油田区的地质环境微生态效应

(一)石油开采对地质环境的影响

由于石油的开采和落地原油改变了原有地质环境中的生态系统,造成了非天然条件下生态系统中的生物演化与演替的较大波动。这些微生物的演替过程,即是石油污染产生各种微生物作用与地球化学作用的过程。特别是在水的参与下,微生物一方面可以对某些石油中有毒有害的物质进行分解和降解,但另一方面由于其分解得不彻底,易解析出或化合成对人类有害的甚至是有毒的物质,它们一旦逸出或随水渗入地下或流入地表水体,均会对环境造成污染,对人类产生危害。

在石油的分解过程中,某些物质呈分子状态被分离出来,或又产生了新的化合物,特别是在微生物地球化学作用下,使石油污染物周边的介质环境和地质环境发生变化,如pH值和Eh值、土壤性质,随污染物质的变化而改变,温度也随分解和化合中能量形式的转换而上升。这些地质环境的变化,反过来又影响着各种作用的方向和进程,尤其是微生物的演替。因此,在落地原油及其周围地质环境中,物质成分和微生物地球化学作用是非常复杂而又不断地变化着,直至在该环境所限定的条件下,经过长期作用,而达到新的平衡。水是石油分解演化中不可缺少的物质,也是一切生命物质的主要组成部分。影响油田区的主要水体是大气降水和浅层地下水,它们一同作为环境中的物质循环载体,一方面对石油污染物在微生物细菌作用下进行降解;另一方面又对地质环境造成污染并使其迁移扩散。由于微生物细菌的微小并可随水的运移而迁移,在其迁移过程中通过其生命的代谢活动参与各种生物化学反应,在一定条件下,微生物代谢活动可以催化石油有机物的分解,从而能促进污染质形成小分子络合物而迁移进入地下水。另一方面在微生物作用下,可使许多有机物得到转化和降解。

土壤包气带土体是微生物细菌生活的大本营,也是污染物质进入环境的一个重要媒介和载体。许多污染物质在进入土壤包气带土体后被其以物理机械吸附、胶体物理化学吸附、化学沉淀等方式作用截留,使其在土体中含量不断积累。虽然土体中的大量微生物可以转化和降解许多的污染物质,但受自然地理条件和营养物质等环境因素的影响,以及石油开采仍有不断的落地原油等污染物质,进入包气带及地下水中,使其石油污染物的量在不断增加,这就造成污染范围的不断扩大,因此,石油开采区落地石油对环境的污染成为影响生态环境的主要因素。对调查区的地质环境和水环境要素的调查与现场测试表明,石油类污染物一般为褐黑色,大多为黑色。

调查区中地表水体:pH值为7.43~9.1,90%以上的取样点大于8。Eh值在-338~101mV之间,一般较低。TDS含量为336~3990mg/L。溶解氧(DO)大多含量较低,为0.8~8.2mg/L(表6-1)。

表6-1 研究区地表水中pH值,Eh,DO,TDS及温度现场测试结果

地下水体中pH值为7.3~8.4,多为8以下近于中性。Eh值在23~134mV之间,为弱氧化环境。TDS含量为236~4980mg/L,大部分小于1000mg/L。溶解氧(DO)含量为1.6~8.2mg/L,大多含量为5mg/L左右(表6-2)。

油层水:pH值为7.0~7.5;Eh值在-109~-132mV之间;TDS含量为159000~292000mg/L,溶解氧(DO)含量较低,为1.6~4.1mg/L(表6-3)。

根据上述情况,地表水主要受采油和炼油污水的影响而定,如污水大量排入水质则差,否则水质好一些。地下水的情况较为复杂,受其各种条件的控制,有些地段污染较重,水质变化较大,有些地段较好尚未受到污染,但从pH值、Eh值和溶解氧(DO)来看,均是微生物细菌生长的良好环境,适宜多种微生物细菌的生长和繁衍。油层水含盐量大于盐卤水,不适宜一般细菌的生长,仅有一些古细菌和极端细菌生长。

表6-2 研究区地下水中pH值,Eh,DO,TDS及温度现场测试结果

表6-3 安塞油区油层水中pH值,Eh,DO,TDS及温度现场测试结果

(二)油田区地质环境中嗜油微生物细菌(以油为碳源培养的细菌)的分布状况分析

2006年4月我们对油田区周边的不同类型的不同位置不同地点采集了27组各类水样和37组土样进行了微生物细菌可利用石油类为营养碳源的培养测试,具体选择了能够反映石油影响环境的以石油、液体石蜡为营养碳源培养的微生物细菌。

1.石油对水体环境污染影响中的嗜油微生物细菌分布状况

从表6-4中可以看出,地下水中,以石油为营养碳源的细菌数,含量较低,一般细菌数在n~n×10个/mL,反映了大部地区地下水受石油污染影响较小,但在石油污染影响大的局部地区如琵琶寨、谷家滩则略高一些。

地下水也同样随石油污染程度、包气带厚度和岩性的不同,嗜油微生物细菌的含量也不同,一般距离石油污染越重包气带岩性较粗渗透性好,则受污染较重嗜油菌应较多。如果按饮用水标准看,采油场周围许多浅层地下水中的石油含量均已超标不能饮用,仅从细菌指标来分析,结合其他水质分析,可能污染的程度会更大一些,应引起人们的高度关注。

表6-4 地下水中嗜油菌(以油为营养碳源培养的细菌)培养与计数结果

地表水河流主要受石油开采排污和地段以及降水的影响,河水一般视其排污混合的比例不同含量有所变化,大部分样品是在河水的稀释作用下石油营养细菌的含量也不是很高,但总的来说河流中下游比地下水高些,细菌群在n×10个/L。从地表水采集样品来看,随着距离不同而污染程度不同,河流的上游如无石油开采则水质相对较好,或在雨季降水量较大也都能对地表水污染起到稀释的作用(表6-5)。

表6-5 地表水中嗜油菌(以油为营养碳源培养的细菌)培养与计数结果

地下油层水石油营养菌数很少,一般在n个/mL,原因是油层水中含有高浓度的盐,盐含量高达数十g/L,抑制了一般性微生物细菌的生长(表6-6)。

比较表6-4~6-6培养的石油营养细菌来看,基本反映了石油污染对水环境的影响,尤其是对地表水系石油污染影响较大。

表6-6 油层水中嗜油菌(以油为营养碳源培养的细菌)培养与计数结果

2.石油对土壤环境影响中的嗜油微生物细菌分布状况

从表6-7不同地区的不同位置深度采集土壤样的石油营养微生物细菌培养测定结果看出,表层土的细菌群数量较大,随深度的加大则减少,但由于总的取样深度不大,有些细菌变化不大,这与土体中石油含量、土壤颗粒大小、氧化还原环境、pH值、温度等有关。石油营养细菌数,在0.25m以浅数量较大,从0.25~1.0m随深度加大数量在减小。

表6-7 土壤中嗜油菌(以油为营养碳源培养的细菌)培养与计数结果

土壤的石油污染程度不同也影响微生物细菌的种类和数量,高浓度石油污染物破坏了土壤的理化性质及通透性,改变了微生物的生存环境,对微生物的生长繁殖有毒害作用,因此,微生物种类数少。而石油污染程度较轻的土样,由于土壤中低浓度的石油污染物为微生物生长提供了碳源,促进微生物的生长繁殖。然而,从这些微生物细菌在土壤包气带中的菌类数量变化,也可得出环境条件的改变对微生物分布及活动的影响,当然不仅是随深度或距离的变化而变,而是随某些特定的地层环境而变化,这些变化也有助于包气带土体对污染物质的阻控与净化。我们也可以利用包气带土体的某些特征层位对石油污染物质加以阻控和修复。这就为我们修复污染土壤提供了一个信息,利用土着微生物修复油污土壤。

对比表6-4~6-7可以看出,土壤中石油营养菌数较地下水、地表水含量大得多,要高出几个数量级,其数量在n×103~n×107个/g之间。石油污染源的边缘地带土壤包气带中,细菌数量随距离和深度变化而发生变化。这也反映了土壤包气带土体对石油污染的阻滞净化作用较明显。

总之,从石油开采地区环境中的微生物细菌的调查研究,可以得出,石油的开采已经对其周边的环境造成了不同程度的污染。但污染程度和范围尚不是很大,究其原因一是大部分开采区近几年开始的清洁生产和人们环保意识的增强,加大投入主动治理环境,使开采区环境有较大的改变;二是包气带和土体均有一定的环境容量,对石油污染物质有一定物理和地球化学的吸附、过滤、氧化分解及化合、螯合等作用;三是在微生物细菌的作用下,使部分石油污染物质降解转化,等等。

二、石油降解菌的筛选和鉴定

本试验从调查区石油污染土壤中筛选出一系列石油降解菌群,通过初步石油降解实验验证后,将优势混合菌群投加到原污染土壤中,进行不同条件下微生物强化降解石油污染土壤的试验,其效果以土壤中石油去除率来验证。

(一)石油降解菌的筛选

将从调查区取得各类石油污染样品,用选择性培养基进行微生物培养并进行计数,确定不同环境中石油降解菌的种类和数量,一方面了解石油对环境污染的生态效应;另一方面从中筛选优势石油降解菌用于放大培养修复试验用菌群。

从调查区石油污染土壤中分离到的各类优势微生物均具有嗜油性,也就是其具有降解石油烃的能力,添加这些优势菌群,就可以提高微生物处理石油污染土壤的效果。

石油污染菌种菌群的分离与优化是用细菌的选择性培养基和富集培养基,对试验场石油污染土壤的样品进行菌种、菌群的培养分离,选择优化出试验用降解土壤中石油污染物的菌种、菌群。本次试验选择优化出的细菌初步鉴定主要为假单胞菌属、微球菌属、放线菌属、真菌类(毛霉、青霉、曲霉)等菌群。

(1)菌种筛选及优势菌群的构建

取石油开采区污染地下水10mL或土壤10g,加入100mL蒸馏水和1mL原油,30℃摇床培养5~7d,摇床转速100r/min。5d后接种到以石油或液体石蜡为唯一碳源的选择培养基平板,挑选生长良好的菌株在培养基平板上分离、纯化,获得石油降解菌。细菌、放线菌和真菌分别用不同的选择性培养基进行培养,并用石油为碳源进行筛选。将筛选得到的细菌、放线菌、真菌进行初步石油降解实验,即在无机盐培养基中加入1%的原油,再接种1%的培养24h后的菌悬液,摇床培养。5d后取出,用三氯甲烷萃取进行分析,从分析结果判断菌群对石油的降解情况,从而构建出优势降解菌群。

(2)降解石油细菌、放线菌、真菌的培养基成分

·1号石油碳源的培养基

固体培养基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),琼脂(12~20g),石油(1%~5%),水(1000mL),pH(7.0)。121℃灭菌30min备用。

液体培养基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),石油(1%~5%),水(1000mL),pH(7.0)。121℃灭菌30min备用。

·2号液体石蜡碳源的培养基

固体培养基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),琼脂(12~20g),液体石蜡(1%~5%),水(1000mL),pH(7.0)。121℃灭菌30min备用。

液体培养基:K2HPO4(1.0g),KH2PO4(1.0g),MgSO4·7H2O(0.5g),NH4NO3(1.0g),CaCl2(0.02g),FeCl3(微量),液体石蜡(1%~5%),水(1000mL),pH(7.0)。121℃灭菌30min备用。

·3号土壤放线菌培养基

(NH4)2SO4(2.0g),CaCO3(3.0g),K2HPO4(1.0g),MgSO4·7H2O(1.0g),NaCl(1.0g),可溶性淀粉(10.0g),琼脂(18g)(液体培养不加),水(1000mL),pH(7.0)。121℃灭菌30min备用。

·4号土壤真菌培养基

取去皮的马铃薯块200g,加水1000mL,煮沸20min左右,用砂布棉花过滤,滤液加水至1000mL,加0.2%的蔗糖,1.5%的琼脂,pH自然。121℃灭菌30min备用。临用时在培养皿中加入无菌的25%的乳酸2滴。

本项实验选择了调查区大部分水样、土样所培养的嗜油微生物细菌和培养的放线菌、真菌类进行了强化、驯化、组合优化实验多达60余组次,进行了大量的实验。

(二)菌群的鉴定

选择的是被石油污染的研究区原位的土壤样品,而后从这些样品中分离、优化、组合,强化这些土着微生物细菌的降解石油污染的能力。根据中国科学院微生物研究所东秀珠等编着的《常见细菌系统鉴定手册》,对选择的降解石油污染的优势菌群进行了初步鉴定主要是:假单胞杆菌属(Pseudomonas)、微球菌属(Micrococcus)、放线菌属(Actino-mycetes)、真菌(fungus)类的霉菌(mold)青霉属(Penicillium)、毛霉菌属(Mucor)、曲霉属(Aspergillus)等菌群。

D. 研究发现了神秘微生物吃石油产甲烷,这是种什么样的微生物

在中国发现的可以通过吃油排出甲烷的微生物,已经有35亿年以上的历史了。它可以通过自身的代谢过程将食用的油脂转化为甲烷和二氧化碳,是一种低成本、高效率的甲烷生产方式。因为微生物在自然界中无处不在,但是肉眼是看不到的!微生物有很多种。微生物分为以下八类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体和螺旋体。

这是一种生产甲烷的实用方法。根据目前的研究结果,目前地球大气中的甲烷大部分是由这种微生物排放的。在没有氧气的情况下,这种微生物可以分解有机物产生甲烷。不管微生物有多神秘,它也属于大自然。当然,因为它在这个世界上起源较早,所以也是多变的,所以种类也很多,而且每一种也大不相同。有些可以在极低的温度下生存,有些可以在极高的温度下生存,有些可以在数千个大气压下生存,有些可以在缺氧的情况下生存。很多细菌被人们利用,比如甲烷,是甲烷细菌代谢有机物产生的,生物炼铜,还有冬虫夏草中的草。

E. 石油蛋白是什么

如今,世界人口已突破60亿,每年消耗的粮食总量达12亿吨。随着全球人口的不断增长,人类总有一天会因缺粮而难以生存。为此,科学家提出开发人工食品,其中很有发展前途的新的食物来源,是从石油中提取蛋白质。

石油之所以能够变成食品,全在于微生物的功劳。在自然界,生存着许许多多微生物,这些微生物中有一些靠“吃”石油为生,它们选定正构烷烃和甲烷作为自己的食物,从而可“生产”出人类大量需要的蛋白质。

在实验中,科研人员首先对这些微生物进行筛选、培育和繁殖,然后将它们接种到正构烷烃的液状石蜡上,由于具备氧气、水、温度和适当的酸碱度等微生物生长繁殖需要的条件,它们在对石油消化和分解后,可繁殖出新的一代,随着微生物的不断繁殖增多,使用先进的工艺技术,科学家可对这些微生物进行处理,从而生产出营养价值很高的石油蛋白质粉末。这种如同奶粉一样的“石油蛋白”,每100克中含有42克蛋白质、3克核酸和一些维生素,而人们今天经常食用的鸡蛋或瘦肉,每100克中仅含有蛋白质14~20克。

F. 真有喜欢吃石油的微生物或细菌吗

当然啦,例如:7月20 日,大连石油管道爆炸第四天,超过23万吨“吃油菌”被投入黄海。吃油菌”的优势则在于,它可以原地分解石油,而且效果更加环保,不会产生其他有害的副作用。用“吃油菌”对受污染环境进行“生物处理”,其原理其实很简单。原油之所以会污染环境,是因为其中含有大量“多环芳烃”( PAHs)。多环芳烃是一种有害的、致癌的、诱发有机体发生突变的化合物,毒性很大,分子结构却很稳定,很难被分解掉——这也是石油泄漏中所要面对的最大问题之一。“吃油菌”却恰恰要依靠这种多环芳烃生长。它们从这些多环芳烃中吸收碳类物质,为其生长和繁殖提供营养。通过这样的“进食”方式,“吃油菌”分解掉石油中的多环芳烃,产生出一种叫做“鼠李糖脂”的物质。相对而言,“鼠李糖脂”在自然界中要容易降解许多,对环境也无害,其存在和一般真菌或酵母对自然界中的影响几乎没什么差别。

G. 发电又吃油的藻类是什么

人们常常在潮湿的地表上看到泛起的蓝绿色、滑腻腻的“地皮”,这些东西的学名就叫“蓝藻”,有人也叫它“蓝细菌”、“蓝绿藻”、“粘藻”。这种藻类是地球最古老的生物,远在30亿年前的远古时代,地球刚刚诞生17亿年左右时,它就诞生了,据说生物界那时只有这类蓝藻。它在极为险恶的环境下,潜伏在水层里,依靠它所含有的叶绿素和藻蓝素成功地利用透射和散射的太阳光进行光合作用,成功地把二氧化碳(CO2)和水(H2O)合成碳水化物〔(CH2O)n〕。光合作用是太阳能的生物转换过程。这一过程合成的碳水化合物便是太阳能的化身。蓝藻可以说是世界上最早的太阳能收集器、贮存器。它的出现意味着地球上以太阳能为动力的生命形式由低级走向高级,从简单走向复杂的开始。蓝藻是一个庞大的生物家庭。目前,已发现的蓝藻有2000多种,分隶于140属20科。

蓝藻与其他光合细菌最大的区别是,其他光合细菌在光合过程中不会放出氧气,而蓝藻却能源源不断地往空中输送氧气。经过长期不断地施放氧气,终于改变了大气的组成,进而在高空形成臭氧层,挡住了紫外线,为以后的需氧生物提供了有利的生存环境,并为海洋生物登陆提供了条件。因此,人们把蓝藻看成是植物界的先驱,进化长河的源流,地球上最早的拓荒者。

蓝藻还能把大气中的游离氮(N2)同氢(H)合成氨(NH3),这就是蓝藻所进行的固氮作用。能进行固氮的蓝藻大多分化为两种细胞:营养细胞和异形胞。在光合过程中,营养细胞能制糖和发电,而异形胞在特定条件下,能催化放出理想的燃料——氢来。

这样说来,蓝藻是一种既能光合(发电、放氧、制糖),又能固氮(合成氨),还能放氢的“综合工厂”,这不仅是植物界绝无仅有的,就是人类社会上也无法与之比拟。可见,蓝藻是一种贡献独特的微生物了。

人类认识和利用蓝藻的历史并不长。1889年首先由弗兰克发现蓝藻能固氮,但当时未能确证,直到1928年才为德雷韦斯所证实。20世纪40年代蓝藻开始在稻田里使用,它生长过程中分泌出的氮化合物和激素物质能大大帮助水稻生长,稻田养藻,水稻一般能增产10%。

更令人感到惊异的是蓝藻竟能发电!揭开蓝藻光合、固氮、放氢的秘密,将使人们可以用太阳能为动力,以水、二氧化碳和氮气为原料,定向地进行发电,合成食物,生产氮肥,制造氢气。近年来,国外已经开始用蓝藻进行发电试验取得成功。科学家们对利用蓝藻制氢也极感兴趣。

作为生物质能源,水生植物的使用,除蓝藻外,其他许多藻类也具有很大潜力。专家们在进行海藻种植研究中发现,藻类生物质可厌氧发酵成甲醇,其转化率可达50%~70%,因此证明,通过藻类可将太阳能转化成化学能(甲醇)。还有人在将海藻研碎后进行发酵过程中发现,这些藻类能释放出大量近似甲烷的可燃性气体。据估算,一公顷海藻,一年内可排出4万立方米的可燃性气体。还有一种海藻,它能在高盐碱的水中产生大量有价值的烃类(其中也含有甘油)。小球藻也能提供大量热能,每克可提供22千焦耳的能量。水风信子是沼气发酵的极好原料,它繁殖速度极快,一株水风信子经过3个月后可产生248181个后代。

令人更为惊异的是藻类还能回收石油。“红巨藻”(紫球藻属)能以相当其生物量生产速度的50%的速率合成分泌出一种磺化多糖。这种多糖的粘度和催化作用与角叉藻聚糖类似,可用于从地下的沙质形成物中回收石油。用其回收石油的数量等于或高于用商品聚合物得到的数量。

无独有偶。同属微生物的一种细菌也能分解原油。据报道,1991年由日本大阪大学的今中忠行教授首次发现了在无氧环境中可以分解原油的细菌。据说,在日本静冈县中部山区,有一股自战前就一直向外涌流的原油,使周围环境受到严重污染。经对油流周围的土质勘察分析后找到一种以原油为食的新菌种。它与目前所掌握的分解原油的细菌同属假单胞菌,其棒状体形直径0.5微米,长1.2~1.5微米。科学家认为,迄今一直难以处理的沉积海底的原油,因这一新菌种的发现将可得到解决。更重要的是,如果用二氧化碳和氢就可以培养这一新的细菌,那么合成接近原油成分的碳氢化合物就将成为可能。人们是否可以指望由此而提供一条人造原油的途径呢?

H. 能帮助清除海洋污染的细菌是什么

近年来,由于工业、交通的发展,大量石油产品污染物流入海洋,导致了海洋环境的污染。有人估计,每年约有1000万吨石油流入海洋,漂浮于海面,破坏了海洋生态平衡,使海洋生物大量死亡,也给人类带来了灾难性的后果。

有什么办法能够清除流入海洋的石油呢?人们又想到了生物。经过长期观察研究,生物学家发现了一种能以石油为食的海洋细菌。这种海洋细菌吃了石油,怎么不会中毒死亡呢?原来在它们体内有一种能分解石油的特殊催化剂——酶。于是,人们让能吃石油的细菌去清除海洋中的石油。现在,生物学家成功地培育出了一种以石油为“食”的完全新型的细菌。这种“超级细菌”只要几小时就可以除去海上的浮油。如果油船在海上遇难,所造成的石油污染将会很快被这种超级细菌清除。

科学工作者还进一步设想:把能吞吃石油的细菌制成菌粉,撒在被石油污染的海域,以清除海中石油;或者模仿吞吃石油的海洋微生物及海洋细菌的机理,制造出高效化学吸附剂或净化剂,以清除海洋污染,保护海洋环境。