当前位置:首页 » 石油矿藏 » 石油地质发展怎么样
扩展阅读
夫妻餐饮店如何控制成本 2025-01-23 06:05:47
一个钻石图标是什么车 2025-01-23 05:55:19
钻石湾足球场什么时候建 2025-01-23 05:54:45

石油地质发展怎么样

发布时间: 2024-04-21 04:50:29

Ⅰ 石油开发地质环境状况及其对能源开发的影响研究

石油不仅是人类主要的能源之一,也是人类环境污染源之一。据资料统计,每年有800多万吨石油进入世界环境,污染土壤、地下水、河流和海洋。随着黄土高原地区石油的大量开采利用,该地区呈现采油面积大、油井多、产量低、开发技术落后等特点。它对自然环境带来的污染日趋严重,直接影响到该地区的生态与生存条件。局部地区情况已经极为严重,已威胁到当地的农业生产和农民的生存环境。石油类物质已成为该地区的重点污染物之一,区内土壤、河流等已不同程度的遭到石油类的污染。

一、鄂尔多斯盆地主要含油气系统

鄂尔多斯盆地是多旋回的叠合含油气盆地,地跨陕、甘、宁、晋、内蒙古5省(区),面积32万km2,显生宙沉积巨厚。盆地基底为太古宙—古元古代变质岩系,中、新元古代为裂陷槽盆地,沉积物为浅海碎屑岩—碳酸盐岩裂谷充填型;早古生代为克拉通盆地,沉积物为陆表海碳酸盐岩台地型;晚古生代—中三叠世为克拉通坳陷盆地,沉积物由滨海碳酸盐岩型过渡为陆相碎屑岩台地型;晚三叠世—白垩纪为大型内陆坳陷盆地,沉积物为陆内湖泊、河流相沉积型;新生代整体上升,盆地主体为平缓西倾的大斜坡,沉积物为三趾马红土和巨厚的风成黄土;周缘有断陷盆地发生和发展。盆地内已勘探开发的4套含油气系统均属地层-岩性油气藏。

1.上三叠统延长组岩油藏含油系统

最早勘探开发的延长组含油系统烃源岩以延长组深湖相及浅湖相黑色泥岩、页岩和油页岩为主,生烃中心分布在盆地南部马家滩—定边—华池—直罗—彬县范围,油源岩最厚达300~400m,有利生油区面积达6万km2(图3-3),储集岩围绕生油凹陷分布,北翼缓坡带有定边、吴旗、志丹、安塞和延安等5个大型三角洲及三角洲前缘砂体,南翼较陡坡带则发育环县和西峰等堆积速率较快的河流相砂体及水下沉积砂体。储渗条件靠裂缝及浊沸石次生孔隙改善,圈闭靠压实构造,遮挡靠岩性在上倾方向的侧变。

2.下侏罗统延安组砂岩油藏含油系统

延安组砂岩油藏以淡水—微咸水湖相沉积的上三叠统延长组烃源岩为主要油源岩,属混合型干酪根;以沼泽相煤系沉积的侏罗系延安组为辅助烃源岩,属腐殖型干酪根,陕北南部的衣食村煤系更以含油率高为特征。三叠纪末期,印支运动使鄂尔多斯盆地整体抬升。在三叠系顶部形成侵蚀地貌,以古河道形式切割延长组。规模最大的甘陕古河由西南向东北汇聚庆西古河、宁陕古河和直罗古河,开口向南延伸(图3-4)。印支期侵蚀面的占河道切割了延长组,成为油气下溢通道,溢出侵蚀面的油气首先向古河床内的富县组和延安组底砂岩运移和聚集,也向延安组上部各砂岩体及古河床两侧的边滩砂体中运移、聚集,以压实构造和大量岩性圈闭为其主要圈闭形式。

图3-3 鄂尔多斯盆地晚三叠世延长组沉积期沉积相图

3.奥陶系马家沟组碳酸盐岩含气系统

鄂尔多斯盆地奥陶系陆表海浅海碳酸盐岩的烃源岩主要为微晶及泥晶灰岩、泥质灰岩、泥质云岩及膏云岩,厚达600~700m。生烃中心:东部在榆林—延安一带,西部在环县—庆阳一带,产生腐泥型裂解气。加里东运动使鄂尔多斯盆地整体抬升,经受130Ma的风化剥蚀,导致奥陶系顶面形成准平原化的古岩溶地貌,盆地中部靖边一带分布有南北走向的宽阔潜台,周缘有潜沟和洼地,在上覆石炭系煤系铁铝土岩的封盖和东侧奥陶系盐膏层的侧向遮挡双重作用下,古潜台成为天然气运移聚集的大面积隐蔽圈闭(图3-5)。

4.石炭-二叠系煤系含气系统

鄂尔多斯盆地石炭系为河湖相和潮坪相沉积,二叠系为海陆过渡相和内陆河湖相沉积,以碎屑岩为主,仅石炭系有少量碳酸盐岩。烃源岩主要为石炭系太原组和下二叠统山西组的煤系,显微组成为镜质体与丝质体,干酪根属腐殖型,煤层气的组分以甲烷为主。北部东胜、榆林地区煤层厚20m,暗色泥岩厚50~90m,范围约7万km2;南部富县、环县地区煤层厚5~10m,暗色泥岩厚10~100m,范围约6万km2。储集体以砂岩为主,主要物源区在北部大青山、鸟拉山一带,各层砂体叠置,蔚为壮观。山西组沉积中心位于盆地南部洛川—庆阳一带,以盆地北部砂体最发育,共有6条大砂体向盆地内延伸,各条大砂体内部受古河网控制,呈现复杂的条带状。储渗条件靠裂缝及后生成岩作用改善,圈闭靠压实构造及上倾方向的岩性遮挡。

图3-4 鄂尔多斯盆地早侏罗世甘陕古河示意图

二、石油开发引起的主要地质环境问题

(一)石油类污染物的产生

在石油的勘探开发过程中,从地质勘探到钻井及石油运输的各个环节中,由于工作内容多,工序差别大,施工情况复杂,管理水平不一,以及设备配置和环境状况的差异,使得污染源的情况比较复杂。石油开采的每一个环节都可能产生石油类污染物(图3-6)。

石油开采不同作业期所产生的石油类污染物具体描述如下:

1.钻井期

在油田进行钻井作业时,会产生含有石油类污染物的钻井废水及含油泥浆。这是钻井过程中,由冲洗地面和设备的油污、起下钻作业时泥浆流失、泥浆循环系统渗漏而产生。废水含抽浓度在50~1200mg/L之间,水量从几吨至数十吨不等。另外,有些情况下,在达到高含油层前,要经过一定数量的低含油地层,从而引起油随钻井泥浆一起带至地面。同时,一经到达高含油层,地压较高时少量高浓度油可能喷出。

图3-5 鄂尔多斯盆地奥陶系顶面古地貌图(据范正平等,2000)

图3-6 石油开采过程中石油类污染物的来源及污染途径示意图

2.采油期

采油期(包括正常作业和洗井),排污包括采油废水和洗井废水。在地下含油地层中,石油和水是同时存在的,在采油过程中,油水同时被抽到地面,这些油水混合物被送进原油集输系统的选油站进行脱水,脱盐处理。被脱出来的废水即采油废水,又称“采出水”。由于采油废水是随原抽一起从油层中开采出来,经原油脱水处理而产生,因此,这部分废水不仅含有在高温高压的油层中溶进了地层中的多种盐类和气体,还含有一些其他杂质。更为主要的是,由于选油站脱水效果的影响,这部分废水中携带有原油———石油类污染物;另外,在研究流域范围内,也存在采用重力分离等简单的脱水方法,并多见于单井脱水的油井。一般地,油井采油废水含抽浓度在数千mg/L,单井排放量平均为数十m3/d。洗井废水是对注水井周期性冲洗产生的污水或由于油井在开采一段时间后,由于设备损坏、油层堵塞、管道腐蚀等原因需要进一步大修或洗井作业而产生的含油废水。

3.原油贮运过程的渗漏

原油在贮存、装运过程中由于渗漏而产生落地原油,以及原油在管道集中输运过程的一些中间环节均有可能造成一定数量的原油泄漏或产生含油废水。

4.事故污染

事故污染包括自然因素和人为因素两种情况:自然事故包括井喷,设备故障和采用车辆运输时山体滑坡引发的交通事故而造成原油泄漏。延安地区地表黄土结构松散、水力冲刷剧烈,由于山体滑坡而导致的污染事故更为频繁。人为事故指各种人为因素造成采油设备、输油管线被破坏及原油车辆运输时,人为交通事故引起的翻车等污染事故。事故污染具有产污量大、危害严重,难以预测的特点。

(二)石油开采过程中对水土环境的影响

在石油的各个环节都可以产生污染,污染对象以土壤为主,其次为地表水体,地下水的污染以间接污染为主,在鄂尔多斯盆地没有明显指标显示石油泄漏或渗透污染了地下水,即地下水中没有检测出有石油类污染物。但在石油开发过程中,地下水的水质发生了明显变化,矿化度明显增加,其他指标也发生了很大变化。

1.对土壤的影响

(1)落地原油对土壤环境的影响

大量的泄漏原油进入土壤中后,会影响土壤中微生物的生存,造成土壤盐碱化,破坏土壤结构,增加石油类污染物含量。原油泄漏后,原油在非渗透性基岩及黏重土壤中污染(扩展)面积较大,而疏松土质中影响扩展范围较小。特别强调的是,黏重土壤多为耕作土,原油覆于地表会使土壤透气性下降,土壤肥力降低。在最初发生泄漏事故时,原油在土壤中下渗至一定深度,随泄漏历时的延长,下渗深度增加不大,根据在陇东油田和陕北油田等实地调查表明,落地原油一般在土壤内部50cm以上深度内积聚,因此,原油泄漏后主要污染土壤的耕作层。

(2)石油类污染物在土壤中的垂直渗透规律

鄂尔多斯盆地气候干燥,降雨量少,地表多为戈壁砂砾覆盖,土壤发育不良,含沙量高,因此,在该盆地进行油田开发,其产生的石油类污染物更容易沿土壤包气带下渗迁移,危害生态环境。其迁移速度决定于土壤对污染物的吸附能力。一般原油比重小于1,长期在土壤中既不是静止不动,又不类似于可溶性物质上下迅速迁移。为了弄清油类物质在土壤中的迁移状况,采用野外取样分析的方法,对石油类污染物在油田区土壤中的迁移规律进行了研究。

分别对陇东西峰油田和庆城油田的井场附近土壤剖面中石油类物质的含量进行了测定,测定结果见表3-5至表3-7。

表3-5 庆城油田石油类污染物在土层中的纵向分布情况

表3-6 西峰油田石油类污染物在土层中的纵向分布情况

表3-7 陕北安塞杏2井放喷池附近石油类在土层中的纵向分布情况

由表3-5至表3-7可知,由于土壤的吸附等作用,石油类污染物随土层纵向剖面距离的增大,其含量逐渐降低,尤其是50cm以内污染物降低得很快。石油类污染物主要积聚在土壤表层80cm以内,而且一般很难下渗到2m以下。长庆油田所在区域多为风沙土和灰棕漠土壤,颗粒较粗,结构较松散,孔隙率比较高,垂直渗透系数较一般土壤大。但由于西北各油田所在地气候干旱,降雨量少,土壤中含水率很低,使污染物的迁移渗透作用大大减弱,又很少有大量降水的淋滤作用,因此油田开发过程中产生的这些落地原油只积聚在土壤表层,渗透程度较浅,对深层土壤影响较小。

2.对地表水体的影响

鄂尔多斯油田地跨陕、甘、宁3省(区),境内主要水系有3个,即甘肃陇东马莲河水系、陕西延安延河水系、陕西靖边无定河水系。石油开发过程中这三大水系都不同程度地受到了污染。

陇东石油开发区地表水最主要的污染物是COD和氯化物,其中COD污染最严重,14个样品中全部超标,环江超标尤其严重;氯化物污染指数除葫芦河、固城川及蒲河各样点中的未超标之外,其余均超标,也以环江为最。pH值均未超标;石油类除环江韩家湾断面严重超标外,其余样品的石油类介于0.04~0.3mg/L;挥发酚除柔远河华池悦乐断面超标1倍之外,其余未超标;环江洪德桥由于地质原因,TDS含量非常高,这部分苦水下泄影响了下游水质,但随着下游水量增加,矿化度逐渐降低。

总体来看,在陇东地区环江和马莲河干流的污染最为严重的,其次是柔远河,蒲河污染最轻。环江与马莲河干流已不能满足Ⅲ类水体功能使用要求,柔远河和蒲河已不能满足Ⅱ类水体功能使用要求。

根据吴旗县水文站从1987年至1992年的水文资料(表3-8),可以看出在石油资源大规模开发前北洛河上游河水中的硫酸盐,氯离子、六价铬含量年均值已超过国家标准Ⅲ类标准,尤其是氯化物含量和硫酸盐含量超过标准2~3倍,矿化度均大于1000,大部分为高TDS水,而且总硬度在500~600mg/L之间,超标严重。

表3-8 吴旗县水文站水质监测数值统计单位:mg·L-1

洛河上游地区水质矿化度及各种盐类含量超标与洛河上游地下水补给区的白垩系、第三系(古、新近系)地层含盐有关,地下水本身矿化度或含盐量高。吴起地区的白于山南缘存在吴起古湖,干枯后形成含盐地层,在地下水补给时将大量盐分输入洛河。吴起西北方向定边地区存在大量盐池及含盐地层,盐分进入地下水向东南方向补给也不容忽视。90年代以来,石油资源大规模开发之后,TDS、六价铬、氨氮、氯化物、高锰酸盐指数、硫酸盐、总硬度等均呈明显的上升趋势,说明目前的洛河上游“高盐、高矿化度(TDS)、高硬度”是在本地较高的基础上进一步水质污染造成的。

陕北地区,石油开发区地表水体中六价铬均超标,其他重金属均未超标,挥发酚大部分都不超标,只有两个样品超标,超标分别为1.8,0.6倍,相对而言,化学需氧量和氨氮超标率大一点。氯化物超标最严重,超标率达到了63%,其次为硫酸盐,硫酸盐有一半多断面超标,接下来是硝酸盐和总磷,氟化物全部不超标。

表3-9是2006年、2007年长庆油田公司安塞油田开发区地面水中有害物监测结果。其中对环境污染最严重是石油类,最大超标32倍,硫化物最大超标120倍,挥发酚最大超标4.2倍,COD最大超标1.71倍,BOD5最大超标5.23倍。其中超标严重地点主要在王窑水库、杏子河冯庄上游。从表3-9可以看出,2007年8月监测数据超标情况比2006年4月监测数据值高。

表3-9 长庆油田公司安塞油田区地面水中有害物监测结果表单位:mg·L-1

3.对地下水的影响

鄂尔多斯盆地地下水埋藏较深,结合上述土壤和地表水体污染特征来看,落地原油和石油废水对地下水没有影响,石油开发对地下水的影响主要是注水井对地下水的影响,这主要在石油开发过程中,大量掠去地下水,改变了地下水环境。

(1)地下水污染状况

在陇东油区,各主要油田区块的地下水由于采油活动使得地下水中的指标超标严重(表3-10)。马岭油田地下水中氨氮超标最为严重,监测结果全部超标,六价铬6个监测点位中有5个超标或接近标准值;氯化物也有超标现象。华池油田地下水有1个监测点位的大肠菌群指标严重超标;各点COD均超标或接近标准值。樊家川油田地下水中氨氮、六价铬、氯化物、细菌总数、大肠菌群全部超标,其中,大肠菌群污染最为严重;另外,氟化物也有超标现象。总体上讲,属较差水质,不适合人类饮用。这些污染与石油开发有很大关系,但是也存在其他的污染因素。

表3-10 陇东油区地下水水质指标表单位:mg·L-1

总体来说,陇东油田地下水的主要污染物是COD,56.25%超过国家Ⅲ类标准,其次是氯化物,31.43mg/L;pH值未超过国家Ⅲ类标准;石油类全部未检出;矿化度变化范围为452.67~15736.00mg/L。

陕北地区石油类、六价铬、氯化物、硝酸盐、硫酸盐部分超标,其余的测试项目均未超标;个别地区石油类超标十倍多,部分井水和泉水六价铬超标,不是很严重;部分样品氯化物超标较严重,最高超标500倍。硝酸盐有1个井水样超标。泉水的pH值较大,井水次之,油层水最小(表3-11)。

表3-11 陕北地区地层水与河水TDS、硬度、氯离子含量对比表

续表

将各地的地下水与其地表水的矿化度、硬度、氯离子进行对比分析,以揭示地下水的地表水的相互关系。表中选取的河水水样是根据地层水的样点位置选取的,在地层水的附近。选取井水、泉水与相应的河流水进行对比,可以看出井水的TDS、硬度、氯离子的含量都比河水低,从其他指标看来地下水的水质也优于同一地区的地表水,这与在调查中发现的当地居民基本饮用地下水的情况相一致。

陕西靖边安塞油田位于大理河上游,从1990年到2006年,靖边青阳岔215km2的范围内先后打成近千口油井,致使这里的浅层地下水渗漏,深层高盐水上溢,地下水资源衰竭,加之民采混乱,蜂窝式的滥采,使油层、水层相互渗透污染,80%的水井干枯,部分能出水的水井水质苦涩,不能饮用。

(2)注水井对地下水的影响分析

以陇东地区为例,目前,陇东油田共有7座采出水处理厂,采出水经处理后回注地层,主要工艺流程为:沉降罐脱出水—除油罐除油—过滤—絮凝—杀菌—回注。

污水回注层位是直罗组(深度约1000m以下)。地层中夹有多层较厚的泥质粉砂岩与泥岩等弱透水层或不透水层,贯通上下岩层的导水构造极不发育,回注水不大可能突破不透水层向上部地层运移和渗透,更不可能进入潜水层与地表水。同时,直罗组砂岩层孔隙度大(19%~22%),纳水容量大,以注水井为基点,影响半径500m范围内,仅按射孔段砂岩平均厚度30m(直罗组砂岩层厚达200~340m)计算,孔隙体积约为500万m3时。可见,选择直罗组作为回注层是合理可行的,在压力驱使下采出水回注直罗组地层后,不大可能突破多层隔水层而污染地下水。

采出水在回注前必须处理达到《地下水质量标准》(GB/T14848—1993)Ⅲ类标准值,这样与深层承压水水质无明显差异,某些组分还低于地下承压水水质,故不可能对深部承压水产生不良影响。此外注水的水体是随原油的开采来自深层地层,经过原油脱水处理后,它的体积远远小于开采时含水原油体积,再返注于作业区深部地层,有利于原油采空区的填充,不大可能因此引起水文地质与工程地质条件的改变。

但是,采出水处理后一般含有较高的矿化度与硬度,并含有一定的DO,H2S,CO2,硫酸盐还原菌和腐生菌。因此在回注过程中易产生沉淀而堵塞污水处理系统及地层孔隙,导致注水不畅,严重时易造成采出水回流污染地表水及地下潜水。DO,H2S,CO2和厌氧菌还可能造成污水处理系统及管线的腐蚀穿孔,也有可能使采出水向非注水层渗漏,引起地下水污染。

通过野外调查,鄂尔多斯盆地在石油开采过程中,用处理后的污水作为回注水的量实际上很少,大部分回注水还是采油部门通过购买当地的淡水资源(TDS含量小于1.5mg/L)进行回注,该盆地需要回注水的量很大,这样大量的占用了当地极为宝贵的淡水资源。

4.对植被影响

石油勘探开发是对地层油藏不断认识发展的过程,不仅扩大了人类活动的范围,更使原先无人到达或难以进入的地区变的可达和易进入,尤其是生态环境脆弱地区,对于黄土丘陵沟壑区、戈壁风沙区来说,灌木、蒿草在维持该地区生态系统平衡方面具有很重要的作用,地表剥离引起的植被破坏,短时间内很难恢复。从用地构成看,井场、站(所)对植被是点状影响,道路、集输管道是线状影响,线状影响远大于点状影响;从用地方式看,临时用地植被可采取人工和自然恢复,永久性用地则完全被人工生态系统代替,虽然经人工植树种草,植被覆盖率上升,但可能造成遗传均化,生态系统功能减弱。

石油生产过程产生的污染物对生长在土壤上植被资源也同样产生影响,污染物超过植物耐污临界点和适应性,将导致局部脆弱生态系统的恶化。对于荒漠戈壁沙滩植被来讲,自然更新很慢,及不易恢复。一般来说,采油、试油等过程中产生的落地原油在地表1m以内积聚,在1m以下土壤中含油量很少,一般不会污染地表水层,对区域地下水基本不产生影响。油田产生的废水、含醇废水经专门收集处理达标后,除部分生活污水用于绿化外,其余全部回注奥陶系,不外排。

同样,由于石油输送是密闭式地下管道输送,也不会对植被造成影响。当原油泄漏时,在管道压力的作用下,原油喷发而出,加上自然风力影响,原油喷溅在周围植物体表上,直接造成植物污染,情况严重的造成植物枯竭,死亡。输油压力越大,喷溅范围越广,污染越严重。

三、地质环境问题对石油开发的影响

石油开采破坏生产环境、增加了生产成本、引发所在生产地居民和生产单位的矛盾。油田道路与管线的修建,对山区方向来的洪水有一定的阻挡作用,水通过自然冲沟自流而下,而道路和管线则起到一定的阻挡和汇集作用,改变洪水流向,形成局部地段较大的洪水,会产生新的水蚀。而经污染的高矿化度的水必定会加速这种水蚀,缩短了石油管线等的使用寿命。

基于石油生产及运输(管道)的特点,不会像煤炭开采一样造成比较大的较明显的地质问题(塌陷、滑坡、泥石流、荒漠化),不会形成严重的事故(如坍塌)而造成的人员及财产损失。它对地质环境的危害相对缓和(与煤炭资源开采相比)。然而其对水体、土壤、气体、作物的影响,必定会危害原本和谐的生态环境,引起当地居民的强烈不满。在没有给当地政府和居民带来良好经济效益的时候,石油的开采及炼化过程必定会步履维艰,如建设征地、劳动力雇佣等。而这些会直接减缓甚或停止生产的顺利进行,从而加大了生产成本;另外,石油开采和生产引起当地土地和水资源的损失,严重影响了当地居民的生存状态,反过来,当地群众为了夺回属于自己的土地和水资源,阻碍石油部门的开采活动。

Ⅱ 石油地质人员在石油行业是最好的职业吗不是的话在石油做什么待遇发展最好

地质人员是不错的职业,因为地质是石油勘探阶段的岗位,不管有没有油,最后能不能打生产井,都需要地质人员。说白了,地质人员比钻井采油岗位的人员需求更大。
地质包含的内容较多,有开发地质、综合地质研究,地质建模,沉积相分析,地层研究,还有地震资料解释、测井资料解释、试井解释等,有些偏现场,像本科和大专生毕业之后一般是从现场做起。一种是偏研究方向,室内工作为主,要求一些常用的地质软件熟练。这些岗位发展都很不错。

Ⅲ 石油勘探技术就业前景怎样

石油与天然气地质勘探技术专业就业前景
石油与天然气地质勘探技术专业的就业前景还是不错的,石油化工主要面向于下游的炼化,比较固定,算半办公室工作,勘探和储运类似于石油工程点,一个是前期的找油气;一个是油气运输和储存,要是能进石油公司的研究院好点。如果能力够的话升职也是比较快的,当然了薪资待遇也会提高。石油与天然气地质勘探技术专业属于资源开发与测绘中石油与天然气类专业,这个专业的就业率是比较高的,但是不太适合女生,因为工作的环境都是比较艰苦的荒山野岭、戈壁沙漠等等,劳动强度大,男生的就业就相对来说很好了,只是要能坚持住就好了。

Ⅳ 我国油气地质勘探发展规律与资源潜力

康 一 孑

油气资源是近几年来是国内关注的焦点,不少媒体以至中央电视台节目中,都提出了对我国石油天然气资源不足而担心,认为探明的储量难于满足需求,并具体举出我国石油、天然气的探明可采储量为 24. 3 亿吨、2. 2 万亿立方米 ( 2003年底资料) 以上可采储量为剩余可采储量,是个动态数字,用发展规律来分析,我国从上世纪九十年代中的十年来,每年的石油探明可采储量都是 24 亿吨左右,产量由 1. 5 亿吨逐步升至 1. 68 亿吨,而天然气在 1995 年的探明可采储量为 0. 7万亿立方米,到 2003 年翻了两番,年产量从 180 亿立方米升到 255 亿立方米,增长的潜力较大。纵观世界和一些主要产油国也有类似的情况,例如美国石油可采资源量较大 ( 为 350 亿吨) ,在 1975 年达到产油高峰期,年产原油 5. 3 亿吨,以后就逐步下降,从 20 世纪 90 年代初到 21 世纪初,产油量为 3 亿吨左右,这 10年间,其石油探明可采储量 ( 即剩余可采储量) 也都在 30 亿吨左右。世界 1978年第一次石油危机时,年产量达 32 亿吨,当年石油剩余可采储量仅 500 亿吨左右,但一直到 1990 年左右,而石油探明可采储量则上升到 1000 亿吨以上,到2000 年则为 1400 亿吨左右,因此采油量在达到 45 亿吨时,储采比也在 30 以上。

石油和天然气是化石能源,自上世纪初开始应用,到 40 年代起逐步代替煤,成为主要能源,到七八十年代在能源消费结构中达到 60% 以上,为工业化发展起了重要作用。化石能源存在于地球历史 5 亿 ~6 亿年到几百万年间的沉积地层中,是不可再生的,蕴藏量有限度,在今后一定时间内总要枯竭。因此,在能源内不能只用石油,要有替代能源和新能源,并应早做准备。但是,世界上在本世纪中,我国在近 20 年内,石油天然气仍然是重要能源。近几年石油价格的猛烈上涨,是有其复杂因素造成,并不是油气资源短缺,这是许多经济学家所承认的。

我国从 20 世纪 50 年代起,在油气地质勘探中不断有所发现,产、储量在世界上占有一定地位,近 10 多年来,石油产量在沙特、伊朗、俄罗斯、美国之下,是在年产 1. 5 亿吨以上的国家中,占据在第五至第九之间的位置。我国 50 多年中,在石油天然气地质勘探中是有一些发展规律需要归纳总结。

一、地质勘探工作上的地质理论、方向、方法和勘探程序

20 世纪 50 年代初,油气产、储量都很低,且受陆相不能生油,勘探力量非常薄弱的基础上起步。首先在我国是以陆相地层为主的条件下,提出陆相地层也能生油的理论鼓舞下,建立了在陆相地层内找油的信心并加以实现,成为世界一大创举。其次,是在中央政府的倡导下,以区域勘探为先驱,统一三大部门 ( 石油部门、地质部和中科院) 的力量,甩开东部新区 ( 松辽和渤海湾盆地) 的战略部署,在较快的时间内打开局面,建立起我国石油工业基地。但在具体工作上,地质勘探走了不少弯路,油田和储量不是那么容易找到和发现的,如区域勘探上的 “区域展开和重点突破”,钻探井中的五位一体 ( 地质、钻井、地震、测井和实验室) ,钻探井中资料的取全取准,钻探中失败教训的总结等。20 世纪 50 年代曾钻探了松辽、渤海湾、鄂尔多斯、柴达木、四川、塔里木等盆地,结果只有前两个成功并获得大油田和较多储量,其他 4 个盆地虽然有小油田和少储量,但基本上是失败的,这是多因素所造成的,将在后面阐述。目前总结的是,只靠单一因素是找不到油气的,例如柴达木、四川、塔里木盆地构造明显又多,但很多钻探失败,鄂尔多斯盆地基本为单斜除个别地域外没有构造,但沉积古地理在一些地方形成三角洲,又找到大型储量上几亿吨的油田。总之,要找到油田和储量是要下功夫的,不论是过去和将来,不能认为: 简单和容易找的油田和储量已找得差不多了,今后都是很难找的了。

据统计,我国中、新生界以陆相为主,石油主要蕴藏于白垩系、侏罗系和三叠系中,渤海湾盆地及沿海大陆架主要是第三系,海相石炭系和奥陶系以塔里木盆地为主,此外四川的海相石炭系、二叠系和三叠系蕴藏有大量天然气,塔里木的陆相的白垩系、第三系,鄂尔多斯的海相奥陶系和海陆交互相的石炭系—二叠系都蕴藏了大量天然气。

二、科技进步使我们找到更多油气田

地质、地震、钻井、测井、测试等各方面技术的发展,有力地推动了油气勘探工作的发展,取得了丰硕成果。特别地震技术的提高,从二维、三维到各种计算机的应用,使人们对地下深层构造以及岩相古地理都有所认识,测井的成像技术对识别油气层的能力提高,钻井在高陡构造和地形复杂地区能定靶钻井,完井试油的酸化压裂技术改变油层产油能力等,都在寻找油气田提高储量上发挥了重要作用。而这些在过去根本无法发现油气田。几个明显的例子: 例一: 准噶尔、塔里木盆地中央的沙漠地带,自 20 世纪 80 年代后进行了地震大剖面工作,才了解了地质构造,并进行钻井,发现了一系列油气田,这在过去是不可能的。例二,塔里木盆地北部库车坳陷早在 50 年代钻井就发现了一个依希克里克小油田,后因构造复杂,地面地下不一致,钻井也过不了关,几十年都解决不了,直到 90年代通过地震工作才将地下构造搞清,钻井也解决了定向钻井的问题,才发现克拉 2 号大气田,成为我国丰度最大产量高的最大气田。例三: 四川是我国天然气发现最早的盆地,但川东地区构造陡,地面地下不一致,找不到地下构造高点,只发现了一些小气田,到 80 年代解决了地震搞清地下构造高点、钻井定向打井的技术,并明确了石炭系储层良好的高产气田,一些构造带成串的气田形成上千亿立方米的储量,改变了四川产气的面貌。例四: 鄂尔多斯盆地三叠系大面积上亿吨油田的发现,主要得益于地层岩相古地理的研究。就在安塞油田有储量而产量低、经济价值不高的时候,采取了井下增产措施———酸化、压裂,并获得成功,使产量提至经济效益以上,油田活了,整个鄂尔多斯盆地上升至年产原油千万吨以上,改变了整个盆地的评价。

80 年代还有一个重要措施,就是科学探索井的拟定和实施,这也是科学研究探索区域勘探的一个办法,在 10 口科探井成功了两口,这就是鄂尔多斯盆地的陕参 1 井和吐哈盆地的台参 1 井,解决了这两个盆地的出气和出油,成为打开一个地区新局面的重大发现,这种发现钻井少而意义大,应引起极大的重视。

三、大的沉积盆地与油气储量、产量的关系密切

石油天然气均分布于各沉积盆地内,据专家统计,世界共有含油气盆地 400多个,大型盆地 ( 一般大于 10 万平方千米) 具有高储量高产量 ( 20 世纪末的资料) ,年产是上亿吨 ( 探明可采储量在 50 亿吨以上) 的盆地有 8 个,年产量上5000 万吨 ( 探明可采储量 20 亿吨以上) 的盆地 28 个,其中我国有 2 个 ( 松辽、渤海湾盆地) 。我国共 400 多个沉积盆地,有油气远景的约 120 个,其中有油气田的 25 个,大型沉积盆地陆上有 9 个 ( 8 个有油气田) 。陆上已有油气田的 8 个大型盆地,松辽、渤海湾两盆地在勘探前期 ( 5 ~15 年内) 就已探明可采储量 20亿吨,其他 4 个盆地则历经艰险,有的经过 40 年甚至 70 年以上的勘探才探明 5亿 ~10 亿吨可采储量 ( 包括天然气储量的油当量) 年采油量 ( 含天然气产量的油当量) 超过 1000 万吨。

鄂尔多斯盆地很具有代表性,从 1908 年开始勘探,到 1950 年只有延长、永坪两个小油田,年产油不足 1 万吨,20 世纪 50 ~ 70 年代在盆地四周及中心做过勘探工作,由于对沉积相进行了研究,才发现了侏罗系河流相的次生油藏,突破中型油田的产油关。80 年代经科学探索井钻探和三叠系沉积相研究分析,找到了奥陶系大气田和湖相三角洲的三叠系大油田,这时的探明可采储量石油达到 3 亿吨,天然气达到了 7000 亿立方米 ( 相当 7 亿吨油当量) ,石油气年产量 1500 万吨,天然气 50 亿立方米以上 ( 2005 年) 。

塔里木盆地是我国陆上最大的沉积盆地,面积 56 万平方千米,石油勘探工作是在1950 年中苏石油公司时开始的,由于中央是沙漠,开始只是在北部库车坳陷和南部西南坳陷进行,因为勘探条件复杂,几上几下,到 20 世纪 80 年代才扎扎实实地对盆地开展了区域勘探,首先在北部轮南地区发现三叠系和侏罗系油藏,又在奥陶系和石炭系见到油田,并在塔中隆起上探明中型石炭系砂岩油藏,但由于后期破坏,大部分构造不含油,使短期内找到大油田、高储量的希望落空。20 世纪末至本世纪初在库车坳陷探明克拉 2 大气田、塔北隆起探明塔河大油田 ( 奥陶系) ,才使在塔里木盆地能找到更多油、气田,更多油气储量成为现实,但塔里木还有很多空白地区和许多找油气的新领域等待我们去发现。

准噶尔盆地和四川盆地也是油气勘探的老区,50 年来也走了不少弯路,近20年又有新发现,油、气储量明显增加,老盆地焕发了青春。准噶尔盆地1955 年发现了西北缘克拉玛依大油田,探明地质储量 7 亿吨以上,是新中国成立后发现的第一个大油田。近 20 年全盆地处处开花,在盆地中部、东部、南部都有新发现,累计探明地质储量达 17 亿吨以上 ( 可采储量达 4 亿吨) ,年产量上千万吨。四川盆地主要产气,但在1958 年川中有三个构造喷出高产油流,开展了找油会战,由于是裂缝产油,石油勘探一直没有突破,而四川盆地在三叠系、二叠系中的裂缝天然气很发育,曾达到年产 60 亿立方米的规模,但由于储量不易计算,川气不能出川。1978 年后,石炭系砂岩气层及侏罗系、二叠系岩性气藏的发现,天然气地质储量达到 8000 亿立方米以上,探明剩余可采天然气储量在 3000 亿立方米以上,天然气年产量达 100 亿立方米以上。

四、油气资源潜力与能源战略

当今世界石油价格猛涨至 50 ~60 美元/桶或更高,国内油气需求上升速度大于油气产量上升速率,近年石油年进口量已超过 1 亿吨,地质勘探工作如何应对这种局面。首先还是要加强国内油气勘探,使国内油气储量、产量保持上升势头,我国石油天然气的常规资源量有潜力,石油产是量尚未达高峰年,天然气已探明可采储量高不足最终可采资源量的 25%,预测年产量在千亿立方米以上,我国是个人口大国,油气年消费量仍在上升,需要在世界石油市场上进口,但决不能像美国那样每年消费掉 8 亿吨以上石油 ( 自己生产 3 亿吨) ,天然气 6000 亿立方米以上 ( 自己生产 4000 亿立方米) ,占世界能源生产总量的 20%以上。

我国非常规油气资源也有一笔不小的数量,首先是石油,我们的稠油、油矿及低渗透油层潜力存在,如准噶尔、松辽、二连、渤海湾、四川等盆地早就有发现,但是由于开发成本高,技术不过关,没有开发,稠油在准噶尔盆地西北缘也开发了一部分,其经济价值甚至高于正常原油。油页岩早在新中国成立前就曾炼制,其数量 ( 储量) 甚为可观,当油气十分奇缺时,我们也应当考虑。非常规天然气在世界上及国内一直考虑的煤层气和可燃冰 ( 天然气水合物) 是很重要的接替物,美国早在 20 世纪 90 年代就年产煤层气 300 亿立方米以上,可燃冰更是数量巨大,在我国油气能源紧张的情况下,更应及早动手勘探开发。当然在我国目前情况下,节能降耗也是必须进行的,在我国人均 GDP 只有 1000 多美元的情况下,就发展了 4000 多万辆汽车 ( 其中私人小汽车占一半以上) ,年用掉原油 1. 3亿吨,相当我国年进口石油的全部,是值得考虑的。从全世界角度考虑,几十年内,化石能源不会短缺,但从目前开始,就应考虑一个问题, “今后只用石油这个能源吗?”世界在今后一个长时期后,肯定要用 “可再生能源”,可再生能源中的太阳能、风能、核能、生物能、氢能……将是今后的主要的。如我们在使用生物能、风能、太阳能、核能中已经获得一些结果。如何改变我们目前能源消费结构中,煤占 67. 7%,油气占 25. 3%,其他只占 7% 的现状,从现在起就要开始努力。

Ⅳ 全国油气资源潜力

评价结果表明,我国待探明石油和天然气资源丰富;待探明石油和天然气资源主要分布在Ⅰ类和Ⅳ类盆地之中,并以Ⅰ类大中型盆地为主,资源风险小。总体上,石油、天然气地质资源探明程度不高,主要含油气盆地勘探还处于中、早期,勘探潜力和勘探领域还很广阔。

一、待探明油气资源总量丰富

1.石油资源

我国待探明石油地质资源为516.52×108t,占总地质资源量的67.52%;待探明石油可采资源量为144.09×108t,占总可采资源量的67.96%。

其中Ⅰ类盆地待探明地质资源量为365.92×108t,可采资源量108.12×108t;Ⅱ类盆地待探明地质资源量为39.00×108t,可采资源量12.12×108t;Ⅲ类盆地待探明地质资源量为2.71×108t,可采资源量为0.74×108t;Ⅳ类盆地待探明地质资源量为108.90×108t,可采资源量为23.12×108t(表6-1-1,图6-1-1)。

表6-1-1 待探明石油资源在不同类别盆地中的分布

图6-1-1 不同类别盆地待探明石油资源分布

资源风险小的Ⅰ、Ⅱ、Ⅲ类盆地有407.63×108t待探明地质资源,120.97×108t待探明可采资源,分别占待探明地质资源和可采资源的78.92%和83.96%。待探明石油资源主要分布在我国东部的松辽和渤海湾盆地(陆上),中部的鄂尔多斯盆地,西部的塔里木、准噶尔和柴达木盆地,近海海域的渤海湾盆地(海域),珠江口盆地等8个待探明地质资源量大于10×108t的盆地中(图6-1-2),待探明地质资源量合计为407.63×108t。青藏地区的羌塘和措勤盆地为Ⅳ类盆地,待探明地质资源量为61.98×108t。

图6-1-2 我国待探明石油地质资源量大于10亿t的盆地

2.天然气资源

我国待探明天然气地质资源量为30.60×1012m3,占总地质资源量的35.03×1012m3的87.37%;待探明天然气可采资源量为19.24×1012m3,占总可采资源量22.03×1012m3的87.31%。

其中,Ⅰ类盆地待探明天然气地质资源量为26.38×1012m3,可采资源量为16.79×1012m3;Ⅱ类盆地待探明地质资源量为0.35×1012m3,可采资源量为0.18×1012m3;Ⅲ类盆地待探明地质资源量为0.18×1012m3,可采资源量为0.09×1012m3;Ⅳ类盆地待探明地质资源量为3.7×1012m3,可采资源量为2.18×1012m3(表6-1-2,图6-1-3)。

表6-1-2 待探明天然气资源在不同类别盆地中的分布

图6-1-3 不同类别盆地天然气资源分布

资源风险小的Ⅰ、Ⅱ、Ⅲ类盆地有待探明天然气地质资源量26.90×1012m3,待探明可采资源量17.06×1012m3,分别占全国待探明地质资源和可采资源总量的87.91%和88.69%。

待探明天然气地质资源主要分布在我国西部的塔里木、四川、鄂尔多斯、柴达木、松辽、东海、莺歌海和琼东南盆地等8个待探明地质资源量大于1×1012m3的Ⅰ类盆地内(图6-1-4),这8个盆地待探明地质资源量合计为24.09×1012m3,待探明可采资源量合计为15.36×1012m3,分别占待探明地质资源和可采资源的78.70%和79.83%。

3.油气比例

从评价结果可以看出,我国待探明石油地质资源量516.52×108t,待探明天然气地质资源量30.60×1012m3,相当于244.84×108t油当量(1250m3天然气=1吨油当量),两者比例为2.11∶1(图6-1-5)。

图6-1-4 我国主要盆地天然气资源分布

图6-1-5 待探明石油天然气地质资源量比较

其中,Ⅰ—Ⅲ类盆地待探明石油地质资源量407.63×108t,待探明天然气地质资源量26.90×1012m3,相当于215.23×108t油当量(1250m3天然气=1t油当量),两者比例为1.89∶1(图6-1-5)。

按目前可采系数取值结果计算,待探明石油可采资源量为144.09×108t;待探明天然气可采资源量为19.24×1012m3,折算为153.89×108t油当量,两者比例为1∶1.07;其中Ⅰ—Ⅲ类盆地待探明石油可采资源量为120.97×108t;待探明天然气可采资源量为17.06×1012m3,折算为136.49×108t油当量,两者比例分别为1∶1.13(图6-1-6)。

天然气可采资源量比重略大于石油的原因:一是天然气地质资源量的增加,二是石油探明程度比天然气高,三是石油的可采系数低,天然气的可采系数高。

图6-1-6 待探明石油天然气可采资源量比较

二、东部、中西部和近海海域为我国三大含油区

待探明石油地质资源主要分布在东部、中西部和海域(图6-1-7)。其中东部区占29.73%,中西部合计占40.10%,海域占16.34%,三大含油区共占我国待探明石油地质资源的86.18%。

图6-1-7 各大区石油地质资源分布

1.东部

东部油气资源勘探程度较高,资源探明程度达到了52.66%,待探明石油地质资源量为153.56×108t,占我国待探明石油资源的29.73%,待探明石油资源潜力还较大(图6-1-8)。其中,渤海湾盆地(陆上)75.20×108t,松辽盆地44.35×108t,占东部待探明石油地质资源的77.86%,仍是我国石油增储上产的主要盆地。

东部资源主要分布在富油凹陷的构造—岩性、地层—岩性油气藏和深层,油气藏的隐蔽性增强,深层勘探难度增大,需要进行更为深入细致的研究和勘探工作。

图6-1-8 东部主要盆地待探明石油资源分布

2.中西部

中西部石油探明率为20.81%,勘探开发程度低,待探明石油地质资源量为207.17×108t,占我国待探明石油资源的40.10%,石油资源潜力很大。资源主要分布在塔里木、鄂尔多斯和准噶尔盆地,分别为70.88×108t、55.59×108t和35.23×108t,共占中西部待探明石油资源的78.05%(图6-1-9),为中西部石油勘探的主体。

图6-1-9 中西部主要盆地待探明石油资源分布

其中塔里木盆地和准噶尔盆地腹部石油资源埋藏较深,普遍在4000m以下;鄂尔多斯盆地储层渗透性较差,以50mD以下的低渗油和5mD以下的特低渗油居多;油气成藏规律复杂,研究还有待深入。

3.近海

近海海域石油资源探明率为21.37%,勘探程度较低。待探明石油地质资源量为84.42×108t,占我国待探明石油资源的16.34%。待探明石油资源比较丰富,是新的储量和产量增长点。其中渤海海域待探明石油资源量为40.73×108t,珠江口盆地为16.65×108t,共占近海待探明石油地质资源的67.97%。石油资源主要分布浅海海域,以常规油和重油为主(图6-1-10)。

图6-1-10 近海主要盆地待探明石油资源分布

东部、中西部和近海为我国的三大含油区,待探明石油地质资源量合计为445.15×108t,待探明石油可采资源量合计为129.76×108t。其中Ⅰ、Ⅱ、Ⅲ类盆地中有待探明石油地质资源量407.63×108t,待探明石油可采资源量120.97×108t,为我国待探明石油资源的主体分布区(图6-1-11)。

图6-1-11东部、中西部、近海待探明石油资源分布

三、中西部和近海海域为我国两大气区

待探明天然气地质资源主要分布在中西部和海域(图6-1-12)。其中,中西部待探明天然气地质资源量为18.16×1012m3,占全国的59.36%,近海为7.59×1012m3,占全国的24.79%。这两个地区共占我国待探明天然气地质资源的84.15%。

图6-1-12 各大区待探明天然气资源分布

1.中西部

中西部待探明天然气地质资源量18.16×1012m3,占我国待探明天然气资源的59.36%,探明率为16.3%,天然气资源潜力大。待探明天然气资源中,塔里木盆地为8.20×1012m3,四川盆地为4.36×1012m3,鄂尔多斯盆地为3.21×1012m3,柴达木盆地1.31×1012m3,共占中西部待探明天然气地质资源的94.01%(图6-1-13),为加快中西部天然气勘探提供了丰富的资源基础。

图6-1-13 中西部主要盆地待探明天然气资源分布

中西部天然气资源的埋藏普遍较深,低渗透天然气资源在鄂尔多斯和四川盆地的比例较大。

2.近海海域

近海海域待探明天然气地质资源量7.59×1012m3,占我国待探明天然气地质资源量的24.79%,探明率为6.36%,主要分布在水深200m以浅的海域(图6-1-14)。其中东海盆地3.53×1012m3,莺歌海盆地1.15×1012m3,琼东南盆地1.01×1012m3,占近海待探明天然气地质资源的75.00%。近海天然气资源主要分布在浅层和中浅层,以常规天然气为主,开发条件相对较好,是开辟东部气源区比较现实的领域。

图6-1-14 近海主要盆地待探明天然气资源分布

中西部和近海待探明天然气地质资源量合计为25.75×1012m3,待探明天然气可采资源量合计为16.49×1012m3(图6-1-15)。其中资源风险小的Ⅰ、Ⅱ、Ⅲ类盆地拥有待探明天然气地质资源量24.50×1012m3,待探明天然气可采资源量15.78×1012m3。中西部和近海是我国待探明天然气资源最丰富的两大含气区,也是加快天然气勘探的主体区。

四、新区、新领域资源潜力可观

本轮资源评价中,除评价了34个已有油气发现的盆地外,还评价了81个尚未有油气发现的Ⅳ类盆地。从基础地质条件分析,包括青藏地区的羌塘、措勤在内的这些盆地多数具有一定的油气潜力和勘探前景,但它们的勘探程度较低。Ⅳ类盆地待探明石油和天然气地质资源量分别为108.90×108t和3.70×1012m3(图6-1-16)。

其中青藏地区的19个盆地,依据地面地质调查资料初步评价,待探明石油资源量68.93×108t,主要分布在羌塘盆地,为50.95×108t,占青藏地区石油资源的73.92%。

图6-1-15 中西部及近海待探明天然气资源分布

图6-1-16 主要Ⅳ类盆地待探明石油资源分布

其他62个中小盆地的待探明石油和天然气地质资源量为39.97×108t和2×1012m3

目前,Ⅳ类盆地的地质认识程度还很低,资源风险大,特别是部分盆地还缺少可直接证明其油气潜力的钻探资料,需要开展深入的调查评价和成藏条件研究,进一步明确含油气前景。

五、我国沉积盆地油气资源丰富

总体上看,我国沉积盆地发育,油气资源丰富;中新生代盆地以陆相为主,古生代盆地以海相为主,盆地经过多期叠加和改造,油气成藏和分布规律复杂,地质认识逐步深化,勘探发现呈阶段性,发展空间广阔。

截至2005年底,全国累计探明石油地质储量257.98×108t,探明程度33.72%。待探明石油地质资源量为507.03×108t,占总地质资源量的66.28%,待探明石油可采资源量为142.40×108t,占总可采资源量的67.16%。

石油探明储量主要集中在渤海湾、松辽、塔里木、鄂尔多斯、准噶尔、珠江口和柴达木等7大盆地,平均探明程度41.42%。待探明石油地质资源也主要分布在这7大盆地,渤海湾盆地最多,为112.74×108t,其次为塔里木和鄂尔多斯盆地,分别为69.13×108t和54.00×108t;7大盆地待探明石油地质资源量共计339.62×108t,占全国的66.98%。渤海湾盆地待探明石油可采资源最多,达28.43×108t,其次是塔里木和松辽盆地,分别为21.77×108t和19.15×108t;7大盆地探明石油可采资源量共计100.44×108t,占全国的70.53%。(表6-1-3)。

表6-1-3 全国石油资源盆地分布表 单位:108t

截至2005年底,全国累计探明天然气地质储量4.92×1012m3,探明程度14.05%。待探明天然气地质资源量30.11×1012m3,占总地质资源量的85.95%,待探明天然气可采资源量为18.94×1012m3,占总可采资源量的85.97%。

天然气探明储量主要集中在塔里木、四川、鄂尔多斯、东海、柴达木、松辽、莺歌海、琼东南和渤海湾等9大盆地,平均探明程度16.24%。待探明天然气地质资源也主要分布在这9大盆地,塔里木盆地最多,为8.14×1012m3,其次为四川和东海盆地,分别为4.15×1012m3和3.53×1012m3;9大盆地待探明天然气地质资源量共计24.34×1012m3,占全国的80.83%。待探明天然气可采资源塔里木盆地最多,为5.36×1012m3,其次是四川和东海盆地,分别为2.61×1012m3和2.41×1012m3;7大盆地探明天然气可采资源量共计15.49×1012m3,占全国的81.78%。(表6-1-4)。

表6-1-4 全国天然气资源盆地分布表 单位:1012m3

六、石油可采资源还有增长潜力

1.提高采收率技术的实际应用

油藏精细描述挖掘剩余油、提高采收率。胜利油田对于整装构造油藏,通过细分韵律层,完善韵律层注采井网;利用水平井技术挖掘正韵律厚油层顶部剩余油;优化小油砂体注采方式。预计钻加密调整井335口,覆盖地质储量1.7534×108t,可增加可采储量385×104t,提高采收率2.2%。

对于高渗透断块油藏,通过细分开发层系、挖掘层间剩余油;完善复杂小断块注采井网,实现有效注水开发;利用水平井挖掘边底水、薄油层油藏的潜力。预计钻加密调整井1285口,覆盖地质储量7.09×108t,可增加可采储量1500×104t,提高采收率2.1%。

对于中低渗透油藏,通过开展低渗透油藏渗流机理研究,优化合理注采井距,确定优化压裂参数,改善低渗透油藏的开发效果预计通过整体加密、完善注采井网等措施,覆盖地质储量2.5×108t,可增加可采储量650×104t。

稠油热采新技术提高采收率。辽河油田曙一区超稠油探明地质储量近2×104t,目前已建成近300×104t的原油生产规模,2006年预计年产原油275×104t,占辽河原油年产量的近1/4,平均单井吞吐已达到9.2个周期,产量递减严重,已处于蒸汽吞吐开采的后期。2005年启动了SAGD技术开采曙一区超稠油的先导试验项目。到2006年12月23日,曙一区杜84块馆平11.12井组正式转入SAGD技术生产已超过300天。此期间原油产量稳定,日产原油达到120t,预计到年底可累计生产原油10×104t以上,标志着SAGD先导试验在辽河油田初步获得成功。

三次采油技术提高采收率。截至2006年9月25日,大庆油田依靠自主创新,采用世界领先的聚合物驱三次采油技术累计产油突破1×108t,成为世界最大的三次采油技术研发、生产基地。

大庆油田从20世纪60年代开始研发三次采油技术,至今已有40多年历史。1972年,三次采油技术第一次走出实验室被应用到生产实践中,取得了良好的技术经济效果,提高采收率5.1个百分点,注入每吨聚合物增产原油153t。1996年,三次采油技术首次在萨尔图油田实现了工业化生产,自此,以聚合物驱油为主导的三次采油技术应用规模逐年加大。

到2006年8月,大庆油田已投入聚合物驱工业化区块35个,面积达到314.41km2。动用地质储量5.2×108t,总井数5700多口。三次采油技术连续5年产油量超过1000×104t,2006年三次采油年产量达到1215×104t,占大庆油田年原油总产量的27%,工业化区块提高采收率12个百分点,达到50%以上,相当于找到了一个储量上亿吨的新油田。并可少注水5×108m3,少产水30×108m3

此外,三元复合驱油技术已从室内研究、先导试验发展到工业化试验,能比水驱提高采收率20个百分点以上。泡沫复合驱是继聚合物驱和三元复合驱之后提高采收率研究取得的最新进展。室内和矿场试验结果表明,该技术能比水驱提高采收率30个百分点左右。

低渗透率油气藏提高采收率。我国油气新增储量中低渗储量比例逐年提高,其中,中石油当年探明低渗储量占探明总储量的比例已上升到近70%,低渗油气藏的有效开发对油气产量的影响日益重要。

鄂尔多斯盆地的长庆油田,属于国内典型的低渗透、特低渗透油田。长庆油田采取地层压裂、酸化及油层注水和储层改造等技术,根据不同区块采取特色开发模式,使低渗透油气田得到了高效开发。先后将低渗储层极限推至10mD,进而1mD,目前工业性开发0.5mD超低渗油藏,并正在进行开展了0.3mD超低渗油藏开发试验研究。低渗透油气田的开发使原来一大批难动用储量获得了解放,油气产量快速增长。随着原油产量连续6年以百万吨的速度增长,截至2006年底,长庆油田原油产量达1100×104t,成为又一个千万吨级大油田。

苏里格气田位于内蒙古境内的毛乌素沙漠,探明储量5336×108m3,为目前我国储量规模最大的整装气田。该气田属于非均质性极强的致密岩性气田,呈现出典型的“低渗、低压、低丰度、低产”特征,经济有效开发的难度非常大。经过长达5年的前期攻关试验,长庆油田公司创新集成了12项经济有效开发特低渗气田的配套技术,使苏里格气田规模有效开发取得了突破性进展。

2006年11月22日,苏里格气田天然气处理厂竣工投运,当年建成的15×108m3产能、30×108m3骨架工程全部并网生产,实现了向京、津地区及周边城市供气。12月28日,苏里格气田外输天然气达到304×104m3,标志着这个当年建设、当年投产的气田具备了年产10×108m3的能力。

2.采收率的动态性

从一次采油到二次采油、三次采油,石油采收率逐步增加;随着提高采收率技术的不断进步,石油采收率还在不断提高。石油采收率具有随着采油阶段的变化和采油技术的提高不断提高的特点。

根据2005年全国油气矿产储量通报,2005年全国石油新增地质储量9.54×108t,新增探明可采储量1.71×108t,标定的采收率不到18%,而同期我国石油水驱采收率的平均值超过24%,标定的采收率偏低,我国目前个别盆地的标定石油可采储量保守,已经出现石油储采比接近1∶1甚至小于1的情况,如珠江口盆地。随着技术进步,现有的地质储量中还有相当一部分可转化为可采储量。如果可采储量的标定还一成不变,会使可采储量与实际值的偏差越来越大。

3.进一步提高采收率潜力

新一轮全国油气资源评价的石油可采系数平均值为27.72%,与目前石油采收率27.11%相当,其中10个重点盆地的石油可采系数为28.70%,其他盆地的石油可采系数为24.16%。其中,低品位资源,包括低渗碎屑岩、低渗碳酸盐岩和重(稠)油,其可采系数取值范围为10%~16%,比常规油资源的可采系数低5%~20%。低勘探程度的中小盆地,可采系数一般取相应评价单元类型可采系数标准的最低值。青藏地区诸盆地,可采系数也取相应评价单元类型可采系数标准的最低值。海域油气资源技术可采系数取值也适当偏小。总体上,本轮资源评价石油可采系数取值可靠,对可采资源量的评价留有一定余地。

目前,我国石油的平均采收率为27.33%,其中:鄂尔多斯盆地石油的平均采收率为17.87%,渤海湾盆地为23.72%,松辽盆地为38.38%,塔里木盆地为20.1%。根据中石油和中石化的《中国陆上已开发油田提高采收率第二次潜力评价及发展战略研究》(2000)研究成果:通过各种提高采收率方法技术,鄂尔多斯盆地石油采收率可以提高10.1%,达到27.97%;渤海湾盆地提高12.84%,达到36.56%;松辽盆地提高16.48%,达到54.86%;塔里木盆地也可提高10%,达到30.1%。在提高采收率技术条件下,按平均采收率提高10%,全国石油的平均采收率可达到37.33%(表6-1-5)。

表6-1-5 石油可采系数与采收率对比表

Ⅵ 请问如今学地质石油与天然气勘探的本科毕业生未来就业如何,将来工作是做什么读研与本科就业有何差距

我是石油勘探专业的人(研究生毕业)!现在做的也是这方面的工作!浅谈下我的看法:
1.本科生就业的有如下几个方向:一是到国内各个油田工作;二是到石油勘探开发等私企去工作、如锐浪等;三是到国外的公司,就是总说的外企,如凤凰公司、Landmark公司等(但是相对难一些) 以上三方面的差别是:各个油田也就是国企,比较稳定,福利待遇比较好,但是工资不是很高,现在本科生的基本工资是2300-2400左右,研究生是2710,私企工资高些,但是福利不如国企!外企就不用说了,挣的钱是最多的!
2.将来的工作:不一定跟你的专业是一致的,你分到哪里就干什么!如:分到物探了,就干野外采集、或者处理、解释之类的,测井也是一样的,或者野外或者数解中心,地质的基本都是室内!
3.读研与本科生的差距:先说说二者在单位的差别吧,你就知道了!1研究生与本科生待遇差别就是基本工资的几百块钱,至于单位的重视程度什么的基本都是一样的,因为都是新员工!2职称:本科生是5年平工程师,研究生是三年,但是想想读研还有三年呢,就比本科生晚了一年;3.在单位的话,学到的东西会比在学校读研要多些!4.要说往上爬的话,如果关系背景都相同的两个人,人家看中的是你的工作能力而不是学历!
综上所述:我的建议是如果你只想好好的工作,之后学好东西往上爬的话而且不想考博士的话,就不要读研,直接参加工作!如果你想要更好的发展,而且将来会考博士的话,建议读研!