当前位置:首页 » 石油矿藏 » 石油点测试机怎么使用
扩展阅读

石油点测试机怎么使用

发布时间: 2024-05-15 05:19:32

‘壹’ 原油凝点测定方法

方法提要

将试样预热到足以使其流动的温度后,用冷却剂冷却,通过观察试样液面是否移动,用逼近法测定试样的凝点。

装置设备

圆底试管高度(160±10)mm,内径(20±1)mm,在距管底30mm的外壁处有一环形标线。

圆底玻璃套管高度(130±10)mm,内径(45±2)mm。

广口保温瓶或筒形容器装冷却剂用。高度不少于160mm,内径不少于120mm。可以用陶瓷、玻璃、木材或带有绝缘层的铁片制成。

水银温度计符合GB514—75《石油产品使用液体温度计技术条件》的规定,供测定凝点高于-35℃的石油产品使用。

液体温度计符合GB514—75的规定,供测定凝点低于-35℃的石油产品使用。

支架固定套管、冷却剂容器和温度计用。

水浴装置。

试剂

冷却剂试验温度在0℃以上时,用水和冰;在0~-20℃时用盐和碎冰或雪;在-20℃以下时用工业乙醇(溶剂汽油、直馏的低凝点汽油或直馏的低凝点煤油)和干冰(固体二氧化碳)。

操作步骤

1)在干燥、清洁的试管中注入试样至1.5~2.0cm高度,用软木塞将温度计固定在试管中央,使水银球距离管底8~10mm;将试管垂直地浸在(50±1)℃的水浴中,直至试样的温度达到(50±1)℃为止。

2)从水浴中取出试管,擦干。用软木塞将该试管牢固地装在套管中,使试管外壁与套管内壁处处距离相等。将套管垂直地固定在支架的夹子上,在室温中静置,至试管中的试样冷却至(35±5)℃后,改浸在冷却剂中(冷却剂的温度要比试样的预期凝点低7~8℃)。当试样温度冷却到预期的凝点时,将浸在冷却剂中的套管倾斜成45°,保持1min,观察试样液面有否移动。

3)当液面位置不移动时,从套管中取出试管,重新加热至试样温度(50±1)℃。然后,用比上次温度高4℃或更高的冷却温度重复步骤2),直至试验温度能使试样液面位置有移动为止。反之,当液面位置有移动,则用比上次温度低4℃或更低的冷却温度重复步骤2),直至试验温度能使试样液面停止移动为止。

4)找出试样的凝点温度范围(试样液面位置从移动到不移动或从不移动到移动的温度范围)之后,采用比试样液面移动的温度低2℃或比不移动的温度高2℃的试验温度重新进行测定,直至某温度能使试样的液面不发生移动,而提高2℃则发生移动时,取使试样液面不发生移动的试验温度作为试样的凝点。

‘贰’ 怎么用红外测油仪

如何判断是否是真正的三波数测油仪呢?
红外测油仪实质就是根据特殊情况的需要,限定了波长范围的红外光谱仪。具有专业性强、稳定性好、快速、简便等特点。因此如何认识红外测油仪先要对红外光谱仪有所了解。
红外光谱仪的主要原理:由于物质在红外光照射下,只能吸收与其分子振动、转动频率相一致的红外光线,因此不同物质只能吸收一定波长的入射光而形成各自特征的红外光谱,而对一定波长红外线吸收的强弱则与物质的浓度有关。根据这一原理可进行物质定性、定量分析及复杂分子的结构研究。
真正意义上对光谱的研究是从英国科学家牛顿(Newton) 开始的。1666 年牛顿证明一束白光可分为一系列不同颜色的可见光,而这一系列的光投影到一个屏幕上出现了一条从紫色到红色的光带。牛顿导入“光谱”(spectrum)一词来描述这一现象。牛顿的研究是光谱科学开端的标志。
1881年Abney 和Festing 第一次将红外线用于分子结构的研究。他们Hilger光谱仪拍下了46个有机液体的从0.7到1.2微米区域的红外吸收光谱。由于这种仪器检测器的限制,所能够记录下的光谱波长范围十分有限。
1908 年Coblentz 制备和应用了用氯化钠晶体为棱镜的红外光谱议;1910 年Wood 和Trowbridge6 研制了小阶梯光栅红外光谱议;1918 年Sleator 和Randall 研制出高分辨仪器。 20 世纪40 年代开始研究双光束红外光谱议。1950 年由美国PE 公司开始商业化生产名为Perkin-Elmer 21 的双光束红外光谱议。与单光束光谱仪相比,双光束红外光谱议不需要由经过专门训练的光谱学家进行操作,能够很快的得到光谱图。Perkin-Elmer 21 的问世大大的促进了红外光谱仪的普及。
现代红外光谱议是以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。傅立叶红外光谱仪的产生是一次革命性的飞跃。
大家对于红外光谱仪的发展已有所了解,那么现在了解一下三波数红外光谱法。
矿物油是由烷烃、环烷烃及芳香烃组成的混合物。早期的各种定量方法都是测量混合组分中部分化合物某一特性基团的特殊吸收(发射),进而推算混合组分总量;一旦具有该特性基团的化合物的相对含量发生变化,吸收系数必然相应变化,所以都存在“标准油”的选择问题,长期以来未能统一。
GB/T 16488-1996的颁布首选了三波长红外光谱法作为统一方法,同时兼顾国情,保留了非分散红外法。
下文主要摘自红外光度法测定水中矿物油的技术和应用 韩子兴,肖丽
1、 非分散红外法的原理及技术局限性
非分散红外法以石油类物质的CH3、 CH2在3.3~3.6 µm 的特征吸收作为测定油含量的基础。该法只利用了矿物油中CH3、 CH2两个特性基团的红外吸收进行测定,没有参考其中芳环的响应,存在“以偏概全”之不足。为考察应用中的局限性,用不同配比甚至极端比例的混合烃进行试验,结果见表1。

No 烃组成 烷烃%(V) 实测值mg/L 回收率%
1 10:0:0 100 156 142
2 7:3:0 100 137 125
3 6.5:2.5:1 90 136 124
4 9:10:1 95 123 112
5 3:7:0 100 122 111
6 9:2:1 91.7 116 105
7 5:3:1 88.9 110 100
8 4:2:1 85.7 109 99.1
9 7:0:3 70 105 95.5
10 0:10:0 100 104 94.5
11 1:2:1 75 86 78.2
12 1:8:4 69.2 79 71.8
13 0:7:3 70 78 70.9
14 3:0:7 30 52 47.3
15 0:3:7 30 36 32.7
16 0:0:10 0 10 9.1

表1
注:烃组成为正十六烷:姥鲛烷:甲苯(V/V);校准油配制值为110mg/L(5:3:1V/V)
由表1可见,非分散红外测油仪对标准油的依赖性确实太大,其所响应的只是烃组成中的CH3、 CH2。回收率对烷烃%(V)的相关性非常显着,P%=4.5+0.79*烷烃%(V),r=0.94;对芳环的响应则未给予应有的考虑,随着样品与校准油中芳烃含量差异的加大,误差也相应增大。

2 、三波长红外光谱法
2.1 三波长红外光谱法的技术路线
矿物油是多种烃的混合物,烃类又存在同系物,无法获得各结构单元、组成比例完全一样的标样,没有常规定量方法的计量关系可以利用。ISO组织用“毋需标准样品的红外光谱定量法”-官能团分析法[1,2]推出了全新的红外分光光度法[3]。
矿物油从化学结构上看主要含CH3、 CH2、芳环三种基团。其组成中的“任一化合物”均可由这三种基团“拼装”而成,因此可分别测定矿物油中的上述三种基团的量,全部基团累加后可得总量。

2.2 数学模型建立及其参数标定
溶液在某一波数处的吸收强度正比于其中某种基团的浓度,且吸收具有加和性[2]。各种基团有不同的吸收强度,所以基团累加时应以各类基团的吸光系数为权,吸光度为权重,加权累计[2]。CH2、 CH3、芳环的C-H键伸缩振动吸收分别在2930cm-1、2960 cm-1、3030cm-1处。由吸收的加和性可知,三波数处的吸光度A2930、A2960、A3030分别为三类基团吸收的分类汇总值,所以其原始数学模型为:
C=x* A2930+y* A2960+z* A3030 (1)
C为溶剂中矿物油的浓度,x、y、z 分别为CH2、 CH3、芳环的C-H键的吸光度系数。因脂烃基对芳环的吸收有叠加,尽管很小,但芳环的吸光度系数大[2],易引起大的误差,需引入校正系数F对A3030修正:
C=x* A2930+y* A2960+ z*( A3030- A2930/F) (2)
此即“三波长红外光谱法”的基本数学模型。
理论上,吸收系数为特定值,但随仪器精度、操作条件有差别,可借助模型化合物的纯物质标定本仪器的值[4]。分别配制富含CH2(如正十六烷)、 CH3(如姥鲛烷或异辛烷)、芳环(如甲苯或苯)基团的单一标准溶液以标定x,y,z:在3400-1~2400cm-1之间进行红外光谱扫描,模型化合物的红外光谱见图1。

图1
逐个量取3030 cm-1、2960 cm-1、2930 cm-1三处的吸光度,依次代入(2)式,得三联方程组,其中F为正十六烷的A2930/ A3030值。
对一特定仪器,在特定条件下,x、y、z、F保持稳定,Nicolet 750Ⅱ红外光谱仪的响应系数见表2。
表2 Nicolet 750 Ⅱ 红外光谱仪的响应系数
光源 溶剂 x y z f
近红外 CCL4 114.19 259.44 1582.5 82.5
中红外 CCL4 143.31 199.2 964.5 85.2
中红外 TTE 177.16 230.65 1015.1 78.0
2.3 系数验证及适应性检验
为验证校正系数,分别用国标样及自配B重油标样进行了回收率试验,结果见表3。
表3 国际样及B重油的测定结果
标样名称 标准值(mg/L) 测定值(mg/L) P% RE%
国际矿物油7330103 15.5±1.4 14.7 94.8 -5
国际矿物油7330401 20.4±2.4 19.5 95.6 -4
国际矿物油7330104 24.9±2.1 24.1 96.8 -3
B重油 10.0 9.95 99.5 -0.5%

试验结果表明,本校正系数的平均回收率为96.7%,相对误差在-0.5%~-5%之间,能满足实用测定要求。
三波长红外光谱法充分兼顾了链烷、环烷及芳香烷的共同影响,能适应各种组成比例混合烃的测定,避开了“标准油”问题,具有很大的优越性。其对烃组成比例变化的适应性验证见表4。
表4表明,三波长红外光谱法对各种烃类组成比例,甚至极端比例的样品均具有很好的响应,不需在每次测定样品前提取或配制“标准油”,充分显示出该法对样品中烃类组成变化所特有的适应性。
表4 烃组成变化对三波长法的影响(配制值105mg/L)
烃组成 9:2:1 4:2:1 1:2:4 1:8:4 9:10:1 10:0:0 0:10:0 0:0:10
实测值mg/L 113.4 111.6 104.9 113.2 115.2 110.7 109.4 99.3
回收率% 108 106.3 99.9 107.8 109.7 105.4 104.2 94.6
芳烃%(V) 8.3 14.3 57.1 30.8 5 0 0 100

注:烃组成为正十六烷:姥鲛烷:甲苯(V/V).
事实证明,三波数红外光谱法是最能反应客观事实。无论实际水样中存在的矿质油是不是“标准油”,红外三波数法都能客观的检测出来。
现在回来文章的主题,真正的红外三波数测油仪是扫描2930cm-1、2960 cm-1、3030cm-1
三个波数,检测这三点的吸光度值,通过吸光度值来计算油的浓度。
不是真正三波数测油仪,只测一或两个点,然后根据这个点的吸光度值和“标准油”的组份比例来推到出的油的浓度。
区分真伪三波数测油仪:
1、是否做标准曲线。真正的三波数测油仪是不用做标准曲线的,因为三波数测油仪是分别测2930cm-1、2960 cm-1、3030cm-1的吸光度值。所以不用做标准曲线。
2、有的测油仪也声称不做标准曲线,做校正系数。其实是把标准曲线隐藏起来了,并不是真正意义上的三波数。实质还是非分散测油仪。
3、最有力的证据证明真正三波数测油仪的方法就是改变油中物质的成分比例,比如表1。然后测量,如果是三波数的就完全可以测出油的实际含量,如果不是三波数测出来的值就不准了。