当前位置:首页 » 石油矿藏 » 什么样的藻类可以生产石油
扩展阅读
驼背支具大概什么价格 2024-11-26 05:25:08

什么样的藻类可以生产石油

发布时间: 2022-01-27 18:40:31

‘壹’ 请问世界上有成功运作的藻类生物柴油生产企业么

青青绿藻炼出滚滚“原油”——美国启动“微型曼哈顿计划”

据《科技日报》2007年2月15日报道:二次世界大战期间,美国有个着名的、研制原子弹的“曼哈顿计划”。如今,美国又出了个“微型曼哈顿计划”,不过,它的宗旨不是研制原子弹,而是向藻类植物要油,以帮助美国摆脱严重依赖进口油的能源窘境。不仅如此,这一计划更令人瞩目的是,它重新燃起了美国新一轮的藻类生物“原油”研发热潮。

藻类生物原油研究重受青睐

藻类是最低等、最古老的一类植物。虽说结构简单,它却能产出一种生物“原油”,这种生物“原油”相当于石油的原油,可用来提炼汽油、柴油、航空燃油,以及作为塑料制品和药物的原料。同时,多数藻类植物还能制造出大量的碳水化合物等中间产品,这些产品经过发酵处理可以转化为乙醇燃料。可以说,藻类植物与生物燃料“缘分”很多。

科学家们研究发现,从绿藻等藻类植物中提炼油还有很多优势,不仅产油效率高,工艺简便,而且整个产油过程非常清洁。首先,藻类植物对生长环境并不太挑剔,可以长在露天池塘里,也可以在农田的边角地段,它不会像玉米那样占用农田。第二,藻类植物可通过现有炼油设备产油,这些原油可进一步提炼成各种油品。第三,据测算,每英亩藻类植物产油的数量,要比目前作为生物柴油主要来源的大豆的多得多。第四,藻类植物能捕获电厂废气中的二氧化碳,有助于控制温室气体排放。美国圣地亚国家实验室的生物燃料与生物能源技术专家安德鲁•克瑞穆说:“藻类植物有产出大量石油的潜能。近期,我们可以利用藻类产出的生物原油替代一部分生物柴油,未来它们将可以替代更多的生物柴油。”

实际上,有关藻类作为一种生物燃料的研究已有多年。20年前,美国国家再生能源实验室曾对此项目进行了近10年的研究,只不过当时的结论并不令人满意。由于当时油价较低,藻类制油的成本没有竞争力,项目也于1996年被迫停止。

不过,如今的能源环保形势,包括居高不下的原油价格、新的技术进步,以及布什政府不断强调可再生清洁燃料等,这些重新激起了人们开发藻类生物燃料的兴趣,特别是高油价使得藻类制油的成本具有竞争力;新的基因和蛋白质技术能使人们更深入地了解藻类植物产油的机理,让它们产出更多的“原油”。另外,藻类植物又能有效地对付二氧化碳温室气体。

目前,在美国一些藻类生物燃料开发公司正在展示他们这方面的新技术,与此同时,一些大型的研究项目也开始启动,它们的近期目标是要让藻类生物燃料在2010年能替代上百万加仑的化石燃料。

“微型曼哈顿计划”引领潮流

“微型曼哈顿计划”就是上述项目中一个代表。倡导这一计划的“点燃燃料”公司,在公司网页上写到:作为美国国家实验室和科学家的联盟,他们此项计划的任务是实现到2010年让藻类产油的工业化,以及未来每天生产百万桶生物原油的目标。为此,他们将以美国能源部圣地亚国家实验室牵头,组织十几家实验室以及上百位专家参与来完成这一宏伟工程。

理论上说,如果种植2000万至4000万英亩的藻类,它们产生的生物原油总量可以达到目前美国原油进口数量,也就是说可以真正起到“替代进口”的作用。“点燃燃料”公司的目标就是要将这一设想变成现实。根据计划,一部分科学家将寻找并培育符合产油率高等条件的藻类植物;一部分科学家将致力于研究如何降低藻类植物生长及其收获成本;另一部分人则研究如何从藻类植物中提取油脂。

“微型曼哈顿计划”的出台带动了藻类生物燃料开发热潮。目前,除了“点燃燃料”公司之外,科罗拉多州的“索力克”生物燃料公司也正在开发类似的藻类制油工艺。不久前,尤他州州立大学的科学家曾宣布利用一种全新技术从藻类中提取出了油,并将其转化为生物柴油燃料,他们期望到2009年时能得到在价格上有竞争力的藻类生物柴油。该大学化学和生物化学教授斯费尔德表示:“藻类制油或许是人类在21世纪面临的最大的科学挑战。目前,有很多解决世界能源问题的想法,但是就是没有一个能长期使用。”

藻类制油工业化仍需努力

不过,像制造原子弹那样,藻类制油工业化进程也并不会一帆风顺,目前仍有一些技术问题需要进一步研发,特别是在为降低生产成本方面的需要解决的难题。

科研人员面临一个主要的技术挑战在于:一些藻类植物能够产出相当于其自身重量60%%的油,但这种情况只是当它处于“饥饿”状态时,才会出现。恰恰是在这个时候,这些藻类植物又会丧失其本来吸引人的优点,如具有快速繁殖及生长的能力。研究人员希望找到控制藻类植物产油的分子开关。如果一旦发现这样的开关,就可以生物方式干预其产油的过程,进而提高产油率,进一步降低成本。

随着藻类植物产油生物机理的了解,研究人员又发现另一个问题,也就是如何以低成本方式在露天池塘中培育藻类。一般说来,露天养殖很容易导致其他物种入侵,因此降低藻类的产量。生物燃料公司的科技顾问委员会主席大卫•金斯伯说,他们目前正在与圣地亚国家实验室以及国家再生能源实验室合作,期望能为藻类植物高产创造出良好的生态环境系统,这样系统让其所有营养物质转化为藻类植物易于吸收的形式,以此扼杀或阻止外来物种入侵。

同时,关于利用藻类植物收集二氧化碳技术的前途问题,绿色燃料公司最近公布的测试结果显示,当阳光合适的话,藻类能够吸收发电厂排出的80%%的二氧化碳,能有效地降低由化石能燃料燃烧直接排放的二氧化碳数量。不过,这一技术还有成本方面的问题。

藻类成为再生能源新突破点

目前,美国联邦政府对藻类制油项目的兴趣十分浓厚。据科学家艾瑞克•杰维斯透露,美国国家再生能源实验室将在未来6—12月内重新启动藻类制油研发项目。

专家们认为:布什在其国情咨文为美国设立了这样的宏伟目标,即在2017年,生产350万加仑的可再生燃料,替代目前20%%的汽油消耗量。这一目标对美国来说也是一大挑战,一方面,以大豆、玉米生产乙醇燃料争议不断,并且已导致了这些农作物食品的价格上涨,引起了墨西哥农民的抗议;另一方面,其他生物质能,如木屑、长草和纤维素等资源虽然比较丰富,但是需要特殊的加工工艺,尽管这些能源技术已在一些小厂开始示范,但并未能证明它们能有效商业化。在这样的情况下,美国也准备将寻找再生能源燃料的目光投向藻类植物这一新的能源突破点上。

‘贰’ 哪些东西可以成为石油的替代品

许多年之前,就已经有人指出:有朝一日,地球上的石油将被用尽。他们建议尽早开始寻找和研究各种替代能源来代替石油。这些建议的目的在于减少人类对石油的依赖,以避免因能源的耗尽而导致严重问题的产生。

有些专家开玩笑说,由于油价太高,30年后,餐馆将成为大多数有车一族最爱去的地方之一了,因为在那里做菜用的植物油也可以给汽车加油,这种做法听起来似乎是玩笑,不过,到时这可能真是惟一的解决方法了呢。

从植物中获取各种能源是一种非常古老的方式,它伴随人类走过了几十万年。然而,现在人们用石化燃料代替了植物后,不少国家的农民就会把收割粮食后剩下的秸秆烧掉。但这是很可惜的,因为这不但会浪费能源,还会增加大气中二氧化碳的排放量,污染环境。现在,不少国家已经意识到了这点,重新开始把利用植物能源作为今后的发展方向。

几十年以后,当玉米油、大豆油代替石油,成为人们生活中不可缺少的一部分后,那时农民们将成为富有的“油类大亨”。也许他们现在还没有意识到这一点,但以后这将成为现实。

目前生物燃料的研究焦点还集中在乙醇上,乙醇是我们日常所喝的酒的主要成份,所以又叫酒精。但这并不是惟一的出路,也不是最好的出路。乙醇是通过植物发酵获得的,虽然它可以作为一种很不错的燃料,但它也有许多不足之处,比如它不像汽油那样具有爆炸性,而且它会吸收水分,容易引起氧化、生锈和腐蚀。假如经常用它来代替汽油使用,可能有天汽车会突然起火、油箱里长满铁锈,或者等着车被慢慢地腐蚀掉。

与酒精相比,植物油更是随处都可以见到和找到,是汽油的一种更为适合的替代品,因为它和汽油的化学组成结构一样,其分子都是由烃链构成的。一般汽油分子由7至10个烃链组成,烃链越短,爆炸性越强,其所能提供的能量也就越强。而植物油分子则一般由14至18个烃链组成。烃链太长是植物油取代汽油的一个不足之处,但通过一定的方式缩短植物油的烃链是有可能的。而且由于柴油分子是由15个烃链组成的,与植物油分子相似,所以,植物油的应用可以先从生物柴油入手。

植物在地球上的储存量高达2亿亿吨,而且每年以1640亿吨的再生速度更新。就中国这样一个农业大国而言,年平均农业秸秆类物质就超过7亿吨。如果能通过生物技术,有效地将其转化为生物产品或生物能源,将大大促进中国农产品深加工业及农业产业化进程,使千千万万农民受益。

除了上面说的用植物油替代石油外,美国一个名叫卡尔文的科学家在巴西发现了一种神奇的橡胶树,只要在这棵树的树干上钻个小洞,就可收获到大量的“柴油”,因而又称之为“柴油树”;澳大利亚有一种“古巴树”,从每棵树上每年可获得约25升燃料油,并且这种油可以直接用在柴油机上而不需特别加工;美洲香槐草是产于美国的一种杂草,它生长在干旱和半干旱地区,从它体内,每公顷土地可以收获约1600升燃料油。

还有一些藻类现在也是产油热点。这些“油藻”生长繁殖迅速,生存环境范围大,燃料油产量也很高。例如:在淡水中生存的一种丛粒藻,它们简直就是一台产油机,能够直接排出液态燃油。另外一些目前尚未发现有明显经济价值的藻类,我们也可以用它们来做沼气原料,而那些含糖量大的藻类则可以用来生产醇类作为燃料。

总之,通过生物途径生产燃油,不但是扩大生物资源利用的一条最经济的途径,对需要大量进口石油的国家也具有重要战略意义。洁净的新能源——生物汽油,对越来越注重保护生态环境的21世纪来说,实在是一剂“良药”!

‘叁’ 如何从藻类提取生物燃料

藻类由于能自行再生,是采攫太阳能的一种很有吸引力的方法,它们可以生长在无利于生产粮食的地方,不需要清水甚至淡水.此外,与玉米或棕榈油之类的传统生物燃料作物相比,它们所需的空间远远要少得多.在有水的环境中,藻类吸收二氧化碳及阳光,产生一种油料,其分子结构与我们现在生产的石油产品类似,这意味着有可能利用现有的炼油厂将它转化成汽油和柴油,通过现有的管道进行运输,然后通过现有的加油站卖给消费者.文特尔表示,那里将测试培育及优化藻类的各种不同技术.这些技术包括开放式池塘养殖藻类,以及将藻类培植在密封管中的生物反应器技术.“我们将尝试这些不同的方法...用新发现的天然藻类测试出最佳可行的方法,以用于规模化生产模式中.”
文特尔花了数年时间,在全世界各个海洋用拖网捕捞各种浮游生物,以寻找在某种方式上可降低全球碳排放量的环保型微生物.他的发现包括那些可以把二氧化碳变成甲烷的生物体,这种生物体可以将电站排放的燃料废气制成燃料;以及另外一种能将煤变成天然气的生物体,这有助于加快某种自然进程,同时减少提取矿物燃料所需的能源以及燃烧时所造成的污染量.

‘肆’ 藻类怎样回收石油

令人惊异的是藻类还能回收石油。“红巨藻”(紫球藻属)能以相当其生物量生产速度的50%的速率合成分泌出一种磺化多糖。这种多糖的粘度和催化作用与角叉藻聚糖类似,可用于从地下的沙质形成物中回收石油。用其回收石油的数量等于或高于用商品聚合物得到的数量。

‘伍’ 藻类植物产油

从植物中提炼石油最让人鼓舞的前景之一来自对藻类的研究和开发,因为它们生长迅速,产量也高。如在淡水中生存的一种丛粒藻,它们简直就是产油机,能够直接排出液态燃油。在美国西海岸附近的海域中,生长着一种巨型海藻,一昼夜可长60厘米,其含油量很高。
日本的一个科研小组宣布,他们成功地从一种淡水藻类中提出取出了石油。这种藻类石油生成能力远远超过预想的程度。

‘陆’ 为什么用海藻也能提取石油

微藻作为一种绿色植物它能够吸收掉空气中的二氧化碳,随后还能通过自身的化学反应来转变成一种脂类的有机物。随后科学家们就可以通过这类含有脂类的藻类来提取石油!

世界能源主要来自石油,每年世界需要13太瓦的能源。而到2050年可能达到26太瓦。石油燃料昂贵,不可再生且产生温室效应。世界银行的经济学家NicholasStem说:“温度变化是世界经济面临的最大问题。”

Seefeldt和数位USU教授组成了一个小组,主要致力于利用农业废物或阳光等发展新的能源技术。美国Utah州通过Utah科学技术研究部门给予这一研究计划为期5年,总共6百万美元的资助。研究组目前已经开展了数项和工业界的合作关系,并且有一项专利已经通过,此外还有4项在审批中。Seefeidt最后说:“USU希望为解决世界能源问题作出努力。”

‘柒’ 海藻怎样变成石油

海藻在太阳光照下吸收二氧化碳,然后在细胞内生成油脂。经过遗传基因改良过的单细胞海藻在池塘中只需五天就可收获。

把海藻从水中捞出,经过一种热化学工艺的“湿性提取法”处理后,油脂便从海藻中分离出来了。

‘捌’ 石油是怎么来的,它在地下多深的地方呀

生成石油的基础条件是沉积物中存在大量的有机物,有了丰富的有机质沉积,还是不能生成石油,还必须具备缺氧环境、温度、压力、时间、催化剂等因素。

缺氧环境就是没有氧气或者氧气少的环境,如果有氧气存在,有机物就会被氧化生成二氧化碳和水。温度也是有机质向石油转化的重要条件,达到一定温度,有机质才能大量向石油转化,有机质生成石油的速度很慢,所需的时间以百万年计,一般来说,温度越高,有机质转化成石油所需的时间越短。

地层的温度与地层深度有关系,地层越深则离地核越近,温度越高,利于有机质在一定的温度下生油,这也可以说是在一定的深度下利于生油。地层的深度越深,不光温度升高,而且压力增大,对生成石油也有利。

细菌和粘土岩中的粘土矿物是加速有机质生成石油的催化剂,含有这种粘土矿物的地层也有利于石油的生成。

(8)什么样的藻类可以生产石油扩展阅读

1、石油的化学成分是短链烷烃、环烷烃和芳香烃的混合物,比如甲烷、丙烷、乙烷。石油是现代工业应用中最重要的资源,通途多种多样。

2、石油溶剂用于香精、油脂、试剂、橡胶加工、涂料工业做溶剂,或清洗仪器、仪表、机械零件。

‘玖’ 藻类是怎么样即发电又吃油的呢

人们常常在潮湿的地表上看到泛起的蓝绿色、滑腻腻的“地皮”,这些东西的学名就叫“蓝藻”,有人也叫它“蓝细菌”、“蓝绿藻”、“粘藻”。这种藻类是地球最古老的生物,远在30亿年前的远古时代,地球刚刚诞生17亿年左右时,它就诞生了,据说生物界那时只有这类蓝藻。它在极为险恶的环境下,潜伏在水层里,依靠它所含有的叶绿素和藻蓝素成功地利用透射和散射的太阳光进行光合作用,成功地把二氧化碳(CO2)和水(H2O)合成碳水化物〔(CH2O)n〕。光合作用是太阳能的生物转换过程。这一过程合成的碳水化合物便是太阳能的化身。蓝藻可以说是世界上最早的太阳能收集器、贮存器。它的出现意味着地球上以太阳能为动力的生命形式由低级走向高级,从简单走向复杂的开始。蓝藻是一个庞大的生物家庭。目前,已发现的蓝藻有2000多种,分隶于140属20科。

蓝藻与其他光合细菌最大的区别是,其他光合细菌在光合过程中不会放出氧气,而蓝藻却能源源不断地往空中输送氧气。经过长期不断地施放氧气,终于改变了大气的组成,进而在高空形成臭氧层,挡住了紫外线,为以后的需氧生物提供了有利的生存环境,并为海洋生物登陆提供了条件。因此,人们把蓝藻看成是植物界的先驱,进化长河的源流,地球上最早的拓荒者。

蓝藻还能把大气中的游离氮(N2)同氢(H)合成氨(NH3),这就是蓝藻所进行的固氮作用。能进行固氮的蓝藻大多分化为两种细胞:营养细胞和异形胞。在光合过程中,营养细胞能制糖和发电,而异形胞在特定条件下,能催化放出理想的燃料——氢来。

这样说来,蓝藻是一种既能光合(发电、放氧、制糖),又能固氮(合成氨),还能放氢的“综合工厂”,这不仅是植物界绝无仅有的,就是人类社会上也无法与之比拟。可见,蓝藻是一种贡献独特的微生物了。

人类认识和利用蓝藻的历史并不长。1889年首先由弗兰克发现蓝藻能固氮,但当时未能确证,直到1928年才为德雷韦斯所证实。20世纪40年代蓝藻开始在稻田里使用,它生长过程中分泌出的氮化合物和激素物质能大大帮助水稻生长,稻田养藻,水稻一般能增产10%。

更令人感到惊异的是蓝藻竟能发电!揭开蓝藻光合、固氮、放氢的秘密,将使人们可以用太阳能为动力,以水、二氧化碳和氮气为原料,定向地进行发电,合成食物,生产氮肥,制造氢气。近年来,国外已经开始用蓝藻进行发电试验取得成功。科学家们对利用蓝藻制氢也极感兴趣。

作为生物质能源,水生植物的使用,除蓝藻外,其他许多藻类也具有很大潜力。专家们在进行海藻种植研究中发现,藻类生物质可厌氧发酵成甲醇,其转化率可达50%~70%,因此证明,通过藻类可将太阳能转化成化学能(甲醇)。还有人在将海藻研碎后进行发酵过程中发现,这些藻类能释放出大量近似甲烷的可燃性气体。据估算,一公顷海藻,一年内可排出4万立方米的可燃性气体。还有一种海藻,它能在高盐碱的水中产生大量有价值的烃类(其中也含有甘油)。小球藻也能提供大量热能,每克可提供22千焦耳的能量。水风信子是沼气发酵的极好原料,它繁殖速度极快,一株水风信子经过3个月后可产生248181个后代。

令人更为惊异的是藻类还能回收石油。“红巨藻”(紫球藻属)能以相当其生物量生产速度的50%的速率合成分泌出一种磺化多糖。这种多糖的粘度和催化作用与角叉藻聚糖类似,可用于从地下的沙质形成物中回收石油。用其回收石油的数量等于或高于用商品聚合物得到的数量。

无独有偶。同属微生物的一种细菌也能分解原油。据报道,1991年由日本大阪大学的今中忠行教授首次发现了在无氧环境中可以分解原油的细菌。据说,在日本静冈县中部山区,有一股自战前就一直向外涌流的原油,使周围环境受到严重污染。经对油流周围的土质勘察分析后找到一种以原油为食的新菌种。它与目前所掌握的分解原油的细菌同属假单胞菌,其棒状体形直径0.5微米,长1.2~1.5微米。科学家认为,迄今一直难以处理的沉积海底的原油,因这一新菌种的发现将可得到解决。更重要的是,如果用二氧化碳和氢就可以培养这一新的细菌,那么合成接近原油成分的碳氢化合物就将成为可能。

‘拾’ 煤能生成石油吗

煤炭,是人们最熟悉和最“亲切”的能源,从极普通的乡村小灶到大型供热系统,都能见到它的身影。煤炭在我国的能源结构中占到了70%以上,充当极为重要的“角色”。在世界能源市场上,煤炭所占的比例也相当大。
煤在能源结构中占有如此“显赫”的地位,应该会受到人们的喜爱吧。可是,长期以来,石油勘探人员却对在油气勘探中遇到的煤层或含煤地层感到十分恼火。这是因为在很长一段时间里,人们一直认为煤与石油是一对相互对立的“冤家”,即成煤环境下不适于生成石油。于是,石油勘探工作者一旦证实自己正在从事勘探的沉积盆地是一个含煤盆地,或者某一个勘探层系属于含煤层系的时候,勘探石油的工作往往不是被终止就是放缓了勘探的速度。
其实,在中外大量的文献中,都曾记载过在开采煤的过程中发现少量石油的消息。但这些现象并未引起石油地质界的重视。含煤盆地或含煤地层与石油无缘的观念束缚了几代石油地质工作者的思想。
人们对自然界的认识是无止境的。20世纪60—80年代,经过几代石油与地矿工作者的努力,终于在澳大利亚、新西兰、加拿大、印度尼西亚等国家相继发现了典型的由煤层或含煤地层形成的油田。
煤为什么可以形成石油而以前又不为石油地质学家所重视呢?从理论上讲,石油主要由水中低等生物(包括浮游植物(藻类)和浮游动物)经过地球化学、生物化学、热变质等作用后形成的;煤炭则主要是由陆生高等植物经过煤化作用形成的。从本质上讲,两者的“母质”都是生物有机质,可以称为“同源”。那么,煤与石油之间会有什么关系吗?
在显微镜下,可以识别出煤中三大类基本有机成分:镜质组(主要源于植物的木质素和纤维素)、隋质组(植物组织经过丝碳化作用形成的富碳成分)和壳质组(植物的孢子、花粉、角质层、木栓质体、基质镜质体等构成的富氢成分)。其中,镜质组和壳质组是生成石油的主要物质。
科技人员经过模拟试验发现,主要存在于树皮之中的高等植物的木栓质体和主要由高等植物的木质纤维组织形成的腐殖质,在温度和压力尚不太高的条件(石油地质学上称之为“低熟阶段”)下,便可以形成石油和天然气,这是地层中主要的产油气阶段。而存在于煤中的一些组分则要在温度和压力进一步增加的条件下才可能生成石油。在荧光显微镜下观察,煤确实形成了石油,在煤块内部的裂纹和孔孔洞洞中,可以看到许多发出强烈荧光的物质,这是煤在排出轻质组分液态烃以后残留下的重质沥青。这种现象证明煤不仅生成了石油,而且还排出了煤层之外。多年的石油地质学与煤岩学研究表明,如果煤中的木栓质体含量达3%以上,就可以成为具有生油能力的油源岩。
由于煤生成的石油的物理和地球化学特征十分明显,所以很容易被识别。煤生成石油以后,重质部分往往会因煤中孔孔洞洞所产生的强大吸附力而被滞存在煤内,轻质部分则相对较容易被排出,所以由煤或含煤地层所形成的石油大多是高品位的轻质油。
然而,由于煤的吸附性较强,而且煤中大量存在微孔隙,使得煤中生成的石油比在岩石中生成的石油更难排出,这也是在全世界范围内有难以计数的煤矿,但却较少有煤成油田的主要原因之一。
我国的煤炭贮藏量极为丰富,多年来的煤产量一直居世界首位。据不完全统计,我国石炭—二叠系、侏罗系和古近—新近系三大主要产煤地层的分布面积占我国陆地面积的1/8。近年来,在新疆吐鲁番—哈密盆地找到的新疆第三大油田——吐哈油田就是一个含煤地层生成石油和形成油藏的实例。
煤不但可以生成石油,更可以生成丰富的天然气。由于甲烷的分子附着力极强,而且煤内的孔隙空间又具有强大的容积,所以与常规的砂岩储层相比,煤的储气量更大,往往可以达到砂岩储层的两倍以上。
根据我国境内已发现的200多个类型不同、面积不等的含煤盆地的推算,埋藏深度小于2000米的煤炭资源量可达5.0882万亿吨,如果按每吨煤平均含气7.14立方米计算,由煤产生的天然气资源量可达33.6万亿立方米,约合159.6亿吨可采原油。
当然,在国内外的研究人员中,也有对煤成油持断然否定态度的。在我国石油地质界比较公认的观点是:煤可以生成石油,但要形成具有工业意义的大油藏,主要贡献者应该是夹在煤层之间的那些富含有机质的泥质岩,即含煤岩系。
人类可以造出石油吗?
对于这个问题,答案是肯定的。而且,人造(人工合成)石油的研究几乎是与天然石油的工业开发同步开展的。从20世纪初开始,人类一方面日益加强对地下石油的勘探开采,另一方面也在锲而不舍地寻找人造石油的有效途径。尤其是那些缺乏天然石油资源的国家,对人工合成石油的研究特别有兴趣。
在众多的发明专利中,由德国化学家弗?费希尔(Fischer)和汉斯?托罗普希(Tropsch)于1923年创立的弗—托合成法已经受了历史的考验,是目前依然在使用的人工合成石油方法。在第二次世界大战期间,德国的科技人员用这种方法实现了每年为法西斯德国提供100万吨合成油的创举。1955年此法传入南非,目前南非的合成能力已高达650万吨/年。
弗—托合成法是以氢和一氧化碳(或二氧化碳)为原料,在以铁为催化剂的作用下合成烃类。它的化学反应机理类似于植物的光合作用,即通过一氧化碳(或二氧化碳)的催化加氢作用和还原聚合作用形成有机化合物。
日本最近研究出了一种把海水转变为石油的方法。他们发明的方法有七道工序:①制备含碳元素的有机碳化物;②制备碳化物(碳与电负性比自己小的金属元素结合成的二元化合物);③制造有机碳素物质;④制造有机铅物质(含铅的有机碳化合物);⑤人工石油原料;⑥粗制的人工石油原料;⑦提纯人工石油产品。
这种方法的优点是价廉,原料来源极为丰富,制成的油料适用于汽车的发动机等,无疑,这是一种意义重大的方法。
不久前,美国太平洋西北巴特尔实验室提出了一种利用污泥制造石油的简易方法。他们先把下水道和河道中的污泥进行浓缩,至少使其体积减少到以前的20%。然后加入强碱,在加压的条件下,把这种污泥与强碱的混合物转化成石油类物质,然后再加工成燃料油。
加拿大和德国的科学家们发明的“低温转变法”也能把污泥转化为石油物质。这种制造过程还能得到30%浓度的昂贵的脂肪酸。这是一种成本低且有利于环保的方法,已引起许多国家工业部门的重视。试想一下,一旦那遍布全球、取之不尽、用之不竭的污泥经过工艺处理,可以变为宝贵的石油,该是一件令人多么激动的事情啊!
近代地球化学研究已经证实,藻类是生成石油的重要物质,所以从理论上讲,含有丰富油脂的藻类是可以用来制造石油的。美国太阳能研究所的科研人员就研制成功了这种技术。用此法生产出的石油主要成分是汽油。它是将藻类通过裂化和酪基转移反应转化为汽油及其他油类。这是一种比较昂贵的制造石油技术,有人在20世纪90年代后期曾估计用这种方法制成的汽油价格可高达近500美元/吨。
生物化学专家估计,每克小球藻可以提供22千焦耳的能量。因此,随着科学技术与工艺水平的提高,开发利用藻类能源有着十分广阔的前景。
在广大的农村地区,人们大多把木材或草木、庄稼秆之类的植物纤维素直接燃烧,这不但热值不高,利用率低,而且污染环境。人们在想方设法提高这类物质的利用率时,发现可以用它来制造石油。
20世纪90年代初,英国科学家通过发酵加工并结合一些化学方法,将新鲜的青草等植物纤维素转化为燃料油。巴西人已经用发酵的方法从甘蔗中获得了燃料,大约可以从1吨甘蔗中产生65升纯度达96%的酒精和其他燃料油。
在我国广东省的茂明和东北的抚顺,人们早已开展了在高温、高压催化剂的条件下,从富含有机质的黑褐色油页岩中提取石油的方法,这也应属于一种人工制造石油的方法。
从目前已经实现的方法来看,我国制造石油的原料十分丰富,价格低廉,这些方法对于缓解我国能源紧张局面无疑将会发挥重要的作用。
除此之外,人造石油还有一个重要而丰富的物质来源——煤炭。在400℃高温和50~300大气压下,将煤粉与氢气混合,经过化学反应之后,煤粉几乎能完全变成液态的人工合成石油。这种合成石油与天然石油没有多大的区别。这就从理论与实践上证实了人造石油的可能性。
许多国家都十分重视用煤炭生产石油,早在20世纪30年代,苏联就开始研究煤炭的加氢反应,苏联学者还采用了先将煤气化,然后在有催化剂存在的情况下使煤气液化成油的方法。在80年代后期,欧洲国家用煤炭合成石油的成本要比当时天然石油的成本高0.5倍,但若改进工艺、扩大生产,二者则有望持平。
国际能源专家认为,石油在现代化大规模企业中的用途与用量都在不断增长,依靠蕴藏量极为丰富的煤炭作原料扩大液体燃料生产应该是适宜的。有的专家甚至估计,到21世纪中叶,煤造石油也许将取代天然石油,当然这种“取代”的速度也将取决于石油探明储量的增加速度、现代化工技术的发展以及全球国际政治格局的变革等因素。