当前位置:首页 » 资源管理 » 电池里都有哪些矿产资源
扩展阅读
大连哪里可以买赶海工具 2024-11-19 10:32:14
乐其沙发是哪个国家产品 2024-11-19 10:26:28
ai混合工具如何做扇形 2024-11-19 10:23:05

电池里都有哪些矿产资源

发布时间: 2022-02-28 04:48:08

⑴ 矿产资源有哪些

地下水、地下热水、二氧化碳气等都属水气矿产类资源。

地下水(ground water),是指赋存于地面以下岩石空隙中的水,狭义上是指地下水面以下饱和含水层中的水。在国家标准《水文地质术语》(GB/T 14157-93)中,地下水是指埋藏在地表以下各种形式的重力水。

地下水是水资源的重要组成部分,由于水量稳定,水质好,是农业灌溉、工矿和城市的重要水源之一。但在一定条件下,地下水的变化也会引起沼泽化、盐渍化、滑坡、地面沉降等不利自然现象。

埋藏条件:

地下水是一个庞大的家庭。据估算,全世界的地下水总量多达1.5亿立方公里,几乎占地球总水量的十分之一,比整个大西洋的水量还要多。根据地下埋藏条件的不同,地下水可分为上层滞水、潜水和承压水三大类。

上层滞水:是由于局部的隔水作用,使下渗的大气降水停留在浅层的岩石裂缝或沉积层中所形成的蓄水体。

潜水是埋藏于地表以下第一个稳定隔水层上的地下水,通常所见到的地下水多半是潜水。当地下水流出地面时就形成泉。潜水存在于地表以下第一个稳定隔水层上面、具有自由水面的重力。它主要由降水和地表水入渗补给。

⑵ 矿产资源有哪些

(一)能源矿产

煤、煤成气、石煤、油页岩、石油、天然气、油砂、天然沥青、铀、钍、地热。

(二)金属矿产

铁、锰、铬、钒、钛;铜、铅、锌、铝土矿、镍、钴、钨、锡、铋、钼、汞、锑、镁;铂、钯、钌、锇、铱、铑;金、银;铌、钽、铍、锂、锆、锶、铷、铯;镧、铈、镨、钕、钐、铕、钇、钆、铽、镝、钬、铒、铥、镱、镥;钪、锗、镓、铟、铊、铪、铼、镉、硒、碲。

(三)非金属矿产

金刚石、石墨、磷、自然硫、硫铁矿、钾盐、硼、水晶(压电水晶、熔炼水晶、光学水晶、工艺水晶)、刚玉、蓝晶石、硅线石、红柱石、硅灰石、钠硝石、滑石、石棉、蓝石棉、云母、长石、石榴子石、叶腊石透辉石、透闪石、蛭石、沸石、明矾石、芒硝(含钙芒硝)、石膏(含硬石膏)、重晶石、毒重石、天然碱、方解石、冰洲石、菱镁矿、萤石(普通萤石、光学萤石)、宝石、黄玉、玉石、电气石、玛瑙、颜料矿物(褚石、颜料黄土)、石灰岩(电石用灰岩、制碱用灰岩、化肥用灰岩、熔剂用灰岩、玻璃用灰岩、水泥用灰岩、建筑石料用灰岩、制金用灰岩、饰面用灰岩)、泥灰岩、白垩、含钾岩石、白云岩(冶金用白云岩、化肥用白云岩、玻璃用白云岩、建筑用白云岩)、石英岩(冶金用石英岩、玻璃用石英岩、化肥用石英岩)、砂岩(冶金用砂岩、玻璃用砂岩、水泥配料用砂岩、砖瓦用砂岩、化肥用砂岩、铸型用砂岩、陶瓷用砂岩)、天然石英砂(玻璃用砂、铸型用砂、建筑用砂、水泥配料用砂、水泥标准砂、砖瓦用砂)、脉石英(冶金用脉石英、玻璃用脉石英)、粉石英、天然油石、含钾砂页岩、硅藻土、页岩(陶粒页岩、砖瓦用页岩、水泥配料用页岩)、高岭土、陶瓷土、耐火粘土、凹凸棒石粘土、海泡石粘土、伊利石粘土、累托石粘土、膨润土、铁矾土、其他粘土(铸型用粘土、砖瓦用粘土、陶粒用粘土、水泥配料用粘土、水泥配料用红土、水泥配料用黄土、水泥配料用泥岩、保温材料用粘土)、橄榄岩(化肥用橄榄岩、建筑用橄榄岩)、蛇纹岩(化肥用蛇纹岩、熔剂用蛇纹岩、饰面用蛇纹岩)、玄武岩(铸石用玄武岩、岩棉用玄武岩)、辉绿岩(水泥用辉绿岩、铸石用辉绿岩、饰面用辉绿岩、建筑用辉绿岩)、安山岩(饰面用安山岩、建筑用安山岩、水泥混合材用安山玢岩)、闪长岩(水泥混合材用闪长玢岩、建筑用闪长岩)、花岗岩(建筑用花岗岩、饰面用花岗岩)、麦饭石、珍珠岩、黑曜岩、松脂岩、浮石、粗面岩(水泥用粗面岩、铸石用粗面岩)、霞石正长岩、凝灰岩(玻璃用凝灰岩、水泥用凝灰岩、建筑用凝灰岩)、火山灰、火山渣、大理岩(饰面用大理岩、建筑用大理岩、水泥用大理岩、玻璃用大理岩)、板岩(饰面用板岩、水泥配料用板岩)、片麻岩、角闪岩、泥炭、矿盐(湖盐、岩盐、天然卤水)、镁盐、碘、溴、砷。

(四)水气矿产

地下水、矿泉水、二氧化碳气、硫化氢气、氦气、氡气。

⑶ 电池里面有哪些化学元素

电池中含有汞、镉、铅、锌等重金属有毒物质。

⑷ 电池里有哪些化学成分

1. 电池的组成:干电池、充电电池的组成成分:锌皮(铁皮)、碳棒、汞、硫酸化物、铜帽;蓄电池以铅的化合物为主。举例:1号废旧锌锰电池的组成,重量70克左右,其中碳棒5.2克,锌皮7.0克,锰粉25克,铜帽0.5克,其他32克。2. 电池的种类:电池主要有一次性电池、二次电池和汽车电池。一次性电池包括纽扣电池、普通锌锰电池和碱电池,一次性电池多含汞。二次电池主要指充电电池,其中含有重金属镉。汽车废电池中含有酸和重金属铅。3. 电池数量:DC、MP3等数码产品在以超猛的速度发展,而且都在使用着电池,电池的使用量在迅速增加,如果再不付诸行动的话,电池山的现象迟早会发生。

⑸ 中国有哪些矿产资源

中华人民共和国成立后,通过对矿产资源的大规模勘查,到1990年年底,中国已发现162个矿种,探明储量的矿种有148个。主要有:

① 能源矿产:煤、石油、天然气、油页岩、铀、钍等。

② 黑色金属矿产:铁、锰、铬、钒、钛等。

③ 有色金属及贵金属矿产:铜、铅、锌、铝、钨、锡、镍、铋、钼、钴、汞、锑、金、银、铂等。

④ 稀有、稀土和分散元素:铌、钽、锂、铍、稀土族元素、锗、镓、铟、镉、硒、磅等。

⑤ 冶金辅助原料非金属矿产:熔剂石灰岩、熔剂白云岩、 硅石、菱镁矿、耐火粘土、 萤石、铸型用砂、高铝矿物原料等。

⑥化工原料非金属矿产: 硫铁矿、 自然硫、磷、钾盐、钾长石、明矾石、 硼、芒硝、天然碱、 重晶石、钠硝石等。

⑦ 建筑材料及其他非金属矿产:云母、石棉、高岭土、石墨、石膏、滑石、水泥用原料、陶瓷粘土、砖瓦粘土、玻璃用砂、建筑用石材、大理石、铸石用玄武岩、珍珠岩、 沸石、蛭石、 硅藻土、膨润土、叶蜡石、刚玉、天然油石、玉石、玛瑙、金钢石、冰洲石、光学萤石、蓝石棉、压电水晶等。

⑧ 中国从20世纪50年代以来,把地下水、地热等也列为矿产管理。

中国矿产资源的不断发现及其地质分布规律中国的许多矿产资源在不同地质条件下作有规律的分布,如:云南东川铜矿、个旧锡矿、湖南锡矿山的锑矿、贵州汞矿、华北地区的煤矿、东北地区的煤矿、新疆的煤矿、鞍山的铁矿、江西的钨矿、新疆阿尔泰的稀有金属矿等。20世纪50年代初至60年代初期,根据已掌握的一些矿产的形成和分布特征,相继扩大或发现并勘探了一批新的矿产资源产地,如:长江中下游铁、铜矿,四川西昌攀枝花的钒钛磁铁矿,北京和冀东地区的铁矿,白云鄂博稀土及铁矿,贵州六盘水地区的煤矿,东秦岭、伏牛山地区的钼矿,西南及中南地区的磷矿,祁连山地区的铜、镍矿,新疆、陕、甘、宁地区的油田,松辽平原的大庆油田,渤海湾、河北、山东及江汉地区的油田等。70年代中期以来,又在辽宁复州湾发现了与山东鲁南地区类似条件的原生金刚石,在胶东半岛扩大了金矿的远景,肯定了西藏昌都地区以铜为主的多种金属成矿带和西藏的铬铁矿远景,在江西、江苏、安徽发现了盐矿,在山东、南京、吉林等地发现了石膏矿,在南海与东海相继发现了工业油流等等。

⑹ 矿产资源包括哪些

矿产资源指经过地质成矿作用,使埋藏于地下或出露于地表、并具有开发利用价值的矿物或有用元素的含量达到具有工业利用价值的集合体。矿产资源是重要的自然资源,是社会生产发展的重要物质基础,现代社会人们的生产和生活都离不开矿产资源。矿产资源属于非可再生资源,其储量是有限的。目前世界已知的矿产有1600多种,其中80多种应用较广泛。
按其特点和用途,通常分为金属矿产、非金属矿产和能源矿产三大类。
它是发展采掘工业的物质基础。矿产资源的品种、分布、储量决定着采矿工业可能发展的部门、地区及规模;其质量、开采条件及地理位置直接影响矿产资源的利用价值,采矿工业的建设投资、劳动生产率、生产成本及工艺路线等,并对以矿产资源为原料的初加工工业(如钢铁、有色金属、基本化工和建材等)以至整个重工业的发展和布局有重要影响。矿产资源的地域组合特点影响地区经济的发展方向与工业结构特点。矿产资源的利用与工业价值同生产力发展水平和技术经济条件有紧密联系,随地质勘探、采矿和加工技术的进步,对矿产资源利用的广度和深度不断扩大。
根据《矿产资源法实施细则》第2条规定,所谓矿产资源是指由地质作用形成的,具有利用价值的,呈固态、液态、气态的自然资源。
目前我国已发现矿种171个。可分为能源矿产(如煤、石油、地热)、金属矿产(如铁、锰、铜)、非金属矿产(如金刚石、石灰岩、粘土)和水气矿产(如地下水、矿泉水、二氧化碳气)四大类。
矿产资源保护的广泛含义:
(1)合理开发利用矿产资源,优化资源配置,实现矿产资源的最优耗竭;
(2)限制或禁止不合理的乱采滥挖,
防止矿产资源的损失,
浪费或破坏;
(3)对矿产资源的开发利用进行全过程控制,
将环境代价减小到最低限度;
(4)保护矿区生态环境,
防止矿山寿命终结时沦为荒芜不毛之地

⑺ 资源,能源的区别分别有哪些还有矿产资源,化石能源有哪些有什么区别方法吗谢谢!在线等

能源是指能提供能量来源的东西,如电池等;能源资源食指能用来提供能源的资源,如煤、石油、天然气.资源
资源是社会生活、工作中可供使用的物资、材料及素材.资源可分为:自然资源、再生资源、网络资源;生产资源、生活资源;自然资源又可分为土地资源、水资源、森林资源等.

⑻ 能源矿产资源

中国能源矿产资源种类齐全、资源丰富、分布广泛。已知探明储量的能源矿产有煤、石油、天然气、油页岩、石煤、铀、钍、地热等8种。

中国煤炭资源相当丰富,探明可采储量占世界的12.1%,居世界第3位

《世界矿产资源年评2003~2004》。煤炭资源的特点是:蕴藏量大,但勘探程度低;煤种齐全,但肥瘦不均,优质炼焦用煤和无烟煤储量不多;分布广泛,但储量丰度悬殊,东少西多,北丰南贫;资源赋存东深西浅,露采煤炭不多,且主要为褐煤;煤层中共伴生矿产多。

中国石油资源量大,剩余可采储量居世界第12位。但石油资源的探明程度比较低,陆上探明石油地质储量仅占全部资源的1/5,近海海域的探明程度更低;分布比较集中,大于10万平方千米的14个盆地的石油资源量占全国的73%。

中国天然气资源相当广泛,在石油盆地和煤盆地中均有不同程度的产出,中部和西部地区的天然气资源量超过全国总量的一半。中国天然气剩余可采储量居世界第20位

oil&Gas Journal。

中国铀矿资源不丰富。据近年中国向国际原子能机构陆续提供的一批铀矿田的储量推算,中国铀矿探明储量居世界第10位之后,不能适应国家大力发展核电的长远需要。其他能源矿产,如地热、石煤和油页岩等在中国储量也比较丰富。

⑼ 锂电池都有哪些物料

我也不是特别清楚,找到一篇,看看是否对您有帮助。祝您顺利。

锂离子电池(Li-ion Batteries)是锂电池发展而来。所以在介绍Li-ion之前,先介绍锂电池。举例来讲,以前照相机里用的扣式电池就属于锂电池。锂电池的正极材料是二氧化锰或亚硫酰氯,负极是锂。电池组装完成后电池即有电压,不需充电.这种电池也可能充电,但循环性能不好,在充放电循环过程中,容易形成锂枝晶,造成电池内部短路,所以一般情况下这种电池是禁止充电的。后来,日本索尼公司发明了以炭材料为负极,以含锂的化合物作正极,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出, 又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。

锂离子电池电池组成部分

(1)电池上下盖

(2)正极——活性物质一般为氧化锂钴

(3)隔膜——一种特殊的复合膜

(4)负极——活性物质为碳

(5)有机电解液

(6)电池壳(分为钢壳和铝壳两种)

锂离子电池优缺点

锂离子电池具有以下优点:

1) 电压高,单体电池的工作电压高达3.6-3.9V,是Ni-Cd、Ni-H电池的3倍

2) 比能量大,目前能达到的实际比能量为100-125Wh/kg和240-300Wh/L(2倍于Ni-Cd,1.5倍于Ni-MH),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L

3) 循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限 将倍增电器的竞争力.

4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5) 自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd的25-30%,Ni、MH的30-35%。

6) 可快速充放电,1C充电是容量可以达到标称容量的80%以上。

7) 工作温度范围高,工作温度为-25~45°C,随着电解质和正极的改进,期望能扩宽到-40~70°C。

锂离子电池也存在着一定的缺点,如:

1) 电池成本较高。主要表现在正极材料LiCoO2的价格高(Co的资源较小),电解质体系提纯困难。

2) 不能大电流放电。由于有机电解质体系等原因,电池内阻相对其他类电池大。故要求较小的放电电流密度,一般放电电流在0.5C以下,只适合于中小电流的电器使用。

3) 需要保护线路控制。

A、 过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在4.1V-4.2V的恒压下充电;

B、 过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。
摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。

材料

电子信息时代使对移动电源的需求快速增长。由于锂离子电池具有高电压、高容量的重要优点,且循环寿命长、安全性能好,使其在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景,成为近几年广为关注的研究热点。锂离子电池的机理一般性分析认为,锂离子电池作为一种化学电源,指分别用两个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。锂离子电池是物理学、材料科学和化学等学科研究的结晶。锂离子电池所涉及的物理机理,目前是以固体物理中嵌入物理来解释的,嵌入(intercalation)是指可移动的客体粒子(分子、原子、离子)可逆地嵌入到具有合适尺寸的主体晶格中的网络空格点上。电子输运锂离子电池的正极和负极材料都是离子和电子的混合导体嵌入化合物。电子只能在正极和负极材料中运动[4][5][6]。已知的嵌入化合物种类繁多,客体粒子可以是分子、原子或离子.在嵌入离子的同时,要求由主体结构作电荷补偿,以维持电中性。电荷补偿可以由主体材料能带结构的改变来实现,电导率在嵌入前后会有变化。锂离子电池电极材料可稳定存在于空气中与其这一特性息息相关。嵌入化合物只有满足结构改变可逆并能以结构弥补电荷变化才能作为锂离子电池电极材料。

控制锂离子电池性能的关键材料——电池中正负极活性材料是这一技术的关键,这是国内外研究人员的共识。

1 正极材料的性能和一般制备方法

正极中表征离子输运性质的重要参数是化学扩散系数,通常情况下,正极活性物质中锂离子的扩散系数都比较低。锂嵌入到正极材料或从正级材料中脱嵌,伴随着晶相变化。因此,锂离子电池的电极膜都要求很薄,一般为几十微米的数量级。正极材料的嵌锂化合物是锂离子电池中锂离子的临时储存容器。为了获得较高的单体电池电压,倾向于选择高电势的嵌锂化合物。正极材料应满足:

1)在所要求的充放电电位范围内,具有与电解质溶液的电化学相容性;

2)温和的电极过程动力学;

3)高度可逆性;

4)全锂化状态下在空气中的稳定性。

研究的热点主要集中在层状LiMO2和尖晶石型LiM2O4结构的化合物及复合两种M(M为Co,Ni,Mn,V等过渡金属离子)的类似电极材料上。作为锂离子电池的正极材料,Li+离子的脱嵌与嵌入过程中结构变化的程度和可逆性决定了电池的稳定重复充放电性。正极材料制备中,其原料性能和合成工艺条件都会对最终结构产生影响。多种有前途的正极材料,都存在使用循环过程中电容量衰减的情况,这是研究中的首要问题。已商品化的正极材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它们作为锂离子电池正极材料各有优劣。锂钴氧为正极的锂离子电池具有开路电压高,比能量大,循环寿命长,能快速充放电等优点,但安全性差;锂镍氧较锂钴氧价格低廉,性能与锂钴氧相当,具有较优秀的嵌锂性能,但制备困难;而锂锰氧价格更为低廉,制备相对容易,而且其耐过充安全性能好,但其嵌锂容量低,并且充放电时尖晶石结构不稳定。从应用前景来看,寻求资源丰富、价廉、无公害,还有在过充电时对电压控制和电路保护的要求较低等优点的,高性能的正极材料将是锂离子电池正极材料研究的重点。国外有报道LiVO2亦能形成层状化合物,可作为正极电极材料[9]。从这些报道看出,虽然电极材料化学组成相同,但制备工艺发生变化后,其性能改变较多。成功的商品化电极材料在制备工艺上都有其独到之处,这是国内目前研究的差距所在。各种制备方法优缺点列举如下。

1)固相法一般选用碳酸锂等锂盐和钴化合物或镍化合物研磨混合后,进行烧结反应[10]。此方法优点是工艺流程简单,原料易得,属于锂离子电池发展初期被广泛研究开发生产的方法,国外技术较成熟;缺点是所制得正极材料电容量有限,原料混合均匀性差,制备材料的性能稳定性不好,批次与批次之间质量一致性差。

2)络合物法用有机络合物先制备含锂离子和钴或钒离子的络合物前驱体,再烧结制备。该方法的优点是分子规模混合,材料均匀性和性能稳定性好,正极材料电容量比固相法高,国外已试验用作锂离子电池的工业化方法,技术并未成熟,国内目前还鲜有报道。

3)溶胶凝胶法利用上世纪70年代发展起

来的制备超微粒子的方法,制备正极材料,该方法具备了络合物法的优点,而且制备出的电极材料电容量有较大的提高,属于正在国内外迅速发展的一种方法。缺点是成本较高,技术还属于开发阶段[11]。

4)离子交换法Armstrong等用离子交换法制备的LiMnO2,获得了可逆放电容量达270mA·h/g高值,此方法成为研究的新热点,它具有所制电极性能稳定,电容量高的特点。但过程涉及溶液重结晶蒸发等费能费时步骤,距离实用化还有相当距离。

正极材料的研究从国外文献可看出,其电容量以每年30~50mA·h/g的速度在增长,发展趋向于微结构尺度越来越小,而电容量越来越大的嵌锂化合物,原材料尺度向纳米级挺进,关于嵌锂化合物结构的理论研究已取得一定进展,但其发展理论还在不断变化中。困扰这一领域的锂电池电容量提高和循环容量衰减的问题,已有研究者提出添加其它组分来克服的方法[12][13][14][15][16][17]。但就目前而言,这些方法的理论机理并未研究清楚,导致日本学者Yoshio.Nishi认为,过去十年以来在这一领域实质进展不大[1],急须进一步地研究。

2 负极材料的性能和一般制备方法

负极材料的电导率一般都较高,则选择电位尽可能接近锂电位的可嵌入锂的化合物,如各种碳材料和金属氧化物。可逆地嵌入脱嵌锂离子的负极材料要求具有:

1)在锂离子的嵌入反应中自由能变化小;

2)锂离子在负极的固态结构中有高的扩散率;

3)高度可逆的嵌入反应;

4)有良好的电导率;

5)热力学上稳定,同时与电解质不发生反应。

研究工作主要集中在碳材料和具有特殊结构的其它金属氧化物。石墨、软碳、中相碳微球已在国内有开发和研究,硬碳、碳纳米管、巴基球C60等多种碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等人利用聚对苯撑乙烯(Polyparaphenylene——PPP)的热解产物PPP-700(以一定的加热速度加热PPP至700℃,并保温一定时间得到的热解产物)作为负极,可逆容量高达680mA·h/g。美国MIT的MJMatthews报道PPP-700储锂容量(Storagecapacity)可达1170mA·h/g。若储锂容量为1170mA·h/g,随着锂嵌入量的增加,进而提高锂离子电池性能,笔者认为今后研究将集中于更小的纳米尺度的嵌锂微结构。几乎与研究碳负极同时,寻找电位与Li+/Li电位相近的其他负极材料的工作一直受到重视。锂离子电池中所用碳材料尚存在两方面的问题:

1)电压滞后,即锂的嵌入反应在0~0.25V之间进行(相对于Li+/Li)而脱嵌反应则在1V左右发生;

2)循环容量逐渐下降,一般经过12~20次循环后,容量降至400~500mA·h/g。

理论上的进一步深化还有赖于各种高纯度、结构规整的原料及碳材料的制备和更为有效的结构表征方法的建立。日本富士公司开发出了锂离子电池新型锡复合氧化物基负极材料,除此之外,已有的研究主要集中于一些金属氧化物,其质量比能量较碳负极材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳电极成熟。锂在碳材料中的可逆高储存机理主要有锂分子Li2形成机理、多层锂机理、晶格点阵机理、弹性球-弹性网模型、层-边端-表面储锂机理、纳米级石墨储锂机理、碳-锂-氢机理和微孔储锂机理。石墨,作为碳材料中的一种,早就被发现它能与锂形成石墨嵌入化合物(Graphite Intercalation Compounds)LiC6,但这些理论还处于发展阶段。负极材料要克服的困难也是一个容量循环衰减的问题,但从文献可知,制备高纯度和规整的微结构碳负极材料是发展的一个方向。

一般制备负极材料的方法可综述如下。

1)在一定高温下加热软碳得到高度石墨化的碳;嵌锂石墨离子型化合物分子式为LiC6,其中的锂离子在石墨中嵌入和脱嵌过程动态变化,石墨结构与电化学性能的关系,不可逆电容量损失原因和提高方法等问题,都得到众多研究者的探讨。2)将具有特殊结构的交联树脂在高温下分解得到的硬碳,可逆电容量比石墨碳高,其结构受原料影响较大,但一般文献认为这些碳结构中的纳米微孔对其嵌锂容量有较大影响,对其研究主要集中于利用特殊分子结构的高聚物来制备含更多纳米级微孔的硬碳[25][26][27]。

3)高温热分解有机物和高聚物制备的含氢碳[28][29]。这类材料具有600~900mA·h/g的可逆电容量,因而受到关注,但其电压滞后和循环容量下降的问题是其最大应用障碍。对其制备方法的改进和理论机理解释将是研究的重点。

4)各种金属氧化物其机理与正极材料类似[24],

也受到研究者的注意,研究方向主要是获取新型结构或复合结构的金属氧化物。

5)作为一种嵌锂材料,碳纳米管、巴基球C60等也是当前研究的一个新热点,成为纳米材料研究的一个分支。碳纳米管、巴基球C60的特殊结构使其成为高电容量嵌锂材料的最佳选择[22][23][30]。从理论上说,纳米结构可提供的嵌锂容量会比目前已有的各种材料要高,其微观结构已被广泛研究并取得了很大进展,但如何制备适当堆积方式以获得优异性能的电极材料,这应是研究的一个重要方向[31][32][33]。

3 结语

综上所述,近年来锂离子电池中正负极活性材料的研究和开发应用,在国际上相当活跃,并已取得很大进展。材料的晶体结构规整,充放电过程中结构不发生不可逆变化是获得比容量高,循环寿命长的锂离子电池的关键。然而,对嵌锂材料的结构与性能的研究仍是该领域目前最薄弱的环节。锂离子电池的研究是一类不断更新的电池体系,物理学和化学的很多新的研究成果会对锂离子电池产生重大影响,比如纳米固体电极,有可能使锂离子电池有更高的能量密度和功率密度,从而大大增加锂离子电池的应用范围。总之,锂离子电池的研究是一个涉及化学、物理、材料、能源、电子学等众多学科的交叉领域。目前该领域的进展已引起化学电源界和产业界的极大兴趣。可以预料,随着电极材料结构与性能关系研究的深入,从分子水平上设计出来的各种规整结构或掺杂复合结构的正负极材料将有力地推动锂离子电池的研究和应用。锂离子电池将会是继镍镉、镍氢电池之后,在今后相当长一段时间内,市场前景最好、发展最快的一种二次电池。

电池的分类有不同的方法其分类方法大体上可分为三大类
第一类:按电解液种类划分包括:碱性电池,电解质主要以氢氧化钾水溶液为主的电池,如:碱性锌锰电池(俗称碱锰电池或碱性电池)、镉镍电池、氢镍电池等;酸性电池,主要以硫酸水溶液为介质,如铅酸蓄电池;中性电池,以盐溶液为介质,如锌锰干电池(有的消费者也称之为酸性电池)、海水激活电池等;有机电解液电池,主要以有机溶液为介质的电池,如锂电池、锂离子电池待。

第二类:按工作性质和贮存方式划分包括:一次电池,又称原电池,即不能再充电的电池,如锌锰干电池、锂原电池等;二次电池,即可充电电池,如氢镍电池、锂离子电池、镉镍电池等;蓄电池习惯上指铅酸蓄电池,也是二次电池;燃料电池,即活性材料在电池工作时才连续不断地 从外部加入电池,如氢氧燃料电池等;贮备电池,即电池贮存时不直接接触电解液,直到电池使用时,才加入电解液,如镁-氯化银电池又称海水激活电池等。

第三类:按电池所用正、负有为材料划分包括:锌系列电池,如锌锰电池、锌银电池等;镍系列电池,如镉镍电池、氢镍电池等;铅系列电池,如铅酸电池等;锂系列电池、锂镁电池;二氧化锰系列电池,如锌锰电池、碱锰电池等;空气(氧气)系列电池,如锌空电池等

充电电池定义
充电电池又称:蓄电池、二次电池,是可以反复充电使用的电池。常见的有:铅酸电池(用于汽车时,俗称“电瓶”)、镉镍电池、氢镍电池、锂离子电池。

电池的额定容量
电池的额定容量指在一定放电条件下,电池放电至截止电压时放出的电量。IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量。单位有Ah, mAh (1Ah=1000mAh)

如何正确使用锂离子电池?
正确使用锂离子电池应注意以下几点:
避免在严酷条件下使用,如:高温、高湿度、夏日阳光下长时间暴晒等,避免将电池投入火中;
装、拆电池时,应确保用电器具处于电源关闭状态;使用温度应保持在-20~55℃之间;
避免将电池长时间“存放”在停止使用的用电器具中;