① 求水资源供需模型 越多越好
水资源实时监控三维管理系统
1、水资源实时监控三维管理系统的特点及技术要求
水资源实时监控三维管理系统”是以信息技术为基础,利用DOM/DEM构建一个真实环境的三维地理信息平台。运用各种高新科技手段,对流域或地区的水资源及相关的大量信息进行实时采集、传输及管理;以现代水资源管理理论为基础,以计算机技术为依托对流域或地区的水资源进行实时、优化配置和调度;以远程控制及自动化技术为依托对流域或地区的工程设施进行控制操作,同时以VR虚拟现实技术为核心,建立真实三维环境的模拟,使实时监控所得的数据能够运行在模拟的真实外野环境,在此基础上进行分析和指挥调度。这种系统的主要特点是:
①、对水资源进行实时监测。 只有掌握瞬时变化的水量信息,才能科学、准确地进行资源配置及调度;只有掌握瞬时变化的水质信息,才能对环境质量进行动态评价和有效监督,也才有可能应对水污染突发事件,保证供水安全。
②、这种系统以三维地理信息系统( VR GIS)为框架 除了采集水资源信息外,还广泛采集流域或地区内的气象、墒情等自然信息,水利工程等基础设施信息,经济与社会发展的基本信息以及需水部门的需水信息,利用VR虚拟现实技术,生动再现实际场景。
③、它不同于以往的水资源监测系统,仅仅具有监测功能。 这种系统更重要的功能是进行实时配置调度。它是在监测的基础上,以大量的综合信息为基础,采用现代水资源管理数学模型,实时三维可视化管理,为水资源的实时配置、调度提供直观的决策支持。
④、这种系统应是高新技术的集成。 系统的设置包括监测技术、通信、网络、数字化技术、遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)、虚拟现实(VR)、人工智能、远程控制等先进技术。
⑤、它的设置应是因地制宜的。 针对不同流域、不同地区不同的经济发展水平及基础设施状况,水资源管理中不同的重点问题,水资源实时监控管理系统的设置也应具有不同的特点。系统的设置还应与防洪调度指挥系统的建设相结合。
这种系统的技术要求是:
①、以现代电子、信息、网络技术为基础,实现监测数据的自动采集、实时传输和在线分析,有效地提高监测数据的实时性和准确率,确保监测信息的有效性。
②、充分掌握所在地区水资源供需状况,建立相应的资料库和水量、水质模型、供需水模型及生态环境分析模型。供水方面包括:地表水、地下水、土壤水,主水、客水、污水回用等等,需水方面包括:生活用水、工业用水、农业用水、生态环境用水等。
③、充分运用现代计算机、VR虚拟现实、人工智能等技术进行高度技术集成,快速、高效、准确、客观地分析处理大量监测数据信息,并根据已建立的供需水模型和水环境分析模型等,动态生成水资源优化配置、调配计划等辅助决策方案。
④、以综合分析和辅助决策为基础,实现对水资源的优化配置、远程控制和科学管理等,即实现水资源调控的现代化。
⑤、系统应具有很强的实用性和动态可扩展性,以满足不同用户的需求。
2、水资源实时监控管理系统的基本结构
水资源实时监控三维管理系统应具备水资源实时测、水资源实时预报、水资源实时调度和水资源实时管理等功能。系统的总体结构又可分解为以下主要部分:
①、三维数据库(包含图形库、图像库/3D模型库和CIS系统);
②、数学模型库(包括方法库);
③、知识库;
④、在线数据采集子系统;
⑤、综合信息三维管理子系统
⑥、综合分析与决策支持三维子系统;
⑦、实时控制三维管理子系统
② 格尔木河流域(平原区)水资源系统数学模型
格尔木河流域水资源数学模型由地下水运动数学模型、河流量数学模型联立耦合构成。
一、地下水运动数学模型
根据前述地下水系统概化,格尔木河流域平原区地下水系统为一独立的水文地质单元,其概念模型为准三维流地下水流动系统。
由前述地下水系统概化,地下水流系统的数学模型可描述如下。
上部潜水含水层地下水流微分方程:
柴达木盆地地下水资源及其环境问题调查评价
下部承压水含水层地下水流微分方程:
柴达木盆地地下水资源及其环境问题调查评价
其中:
柴达木盆地地下水资源及其环境问题调查评价
式中:H1,H2,HR,HS,Hf,分别为潜水水位、承压水位、河水水位、泉(沼泽)溢出高程、地形高程;H1b,H2b,H10,H20,分别为潜水与承压水含水层第三类边界参照水位;潜水与承压水含水层初始水位;K1,T,分别为潜水含水层渗透系数、承压水含水层导水系数;σ′为潜水与承压水含水层之间的越流系数;β1,β2,分别为潜水与承压水含水层第三类边界流量增量系数;μ,μ*,分别为潜水含水层给水度,承压水含水层储水系数;Q1i,Q2i,分别为潜水井开采量,承压水井开采量;q10,q20,分别为初始条件下潜水与承压含水层边界单宽流量;WR,WS,分别为河流与潜水含水层水量交换强度、泉及沼泽与潜水含水层水量交换强度;Qr,WRmax,BR,γ,分别为河水流量、河床极限渗漏强度、河床水面宽度、河床漏水系数;HS,α,分别为泉水(沼泽)溢出高程、泉水(沼泽)溢出系数;E0(C,t),E(x,y,t),分别为矿化水水面蒸发强度、潜水含水层蒸发强度;Δ0,Δ,m,分别为潜水极限蒸发深度、潜水位埋深、包气带岩性蒸发特征指数;n为边界外法线方向;G为计算区;Γ3为第三类边界;f1(x,y),f2(x,y),f3(x,y),分别为河床分布函数,泉水(沼泽)分布函数。
二、河水流量数学模型
描述河流流量数学模型为
柴达木盆地地下水资源及其环境问题调查评价
式中:Qri(l,t)为第i条河流流量;Qri0(t)为第i河流入境流量;Qrj(t)为第j支流汇入流量;WR,BR(l,t)分别为河床渗漏强度、河床水面宽度;l,lj分别为河流流程长度、第j支流汇入点流程长度;δ(x)为一维狄拉克函数。
三、水资源数学模型离散与求解
(一)剖分离散
地下水系统数学模型剖分。其空间剖分选用矩形网格,用高斯-克吕格地理投影地图作为底图,坐标方向与公里网平行,水平方向取1000m×1000m等距剖分步长,剖分网格与公里网一致;垂向剖分采用不等距剖分,自上而下以四个空间曲面作为垂向剖分面:地形高程曲面、潜水含水层底板曲面、等效越流层底板曲面(潜水含水层底板曲面平行下移10m)、隔水底板曲面(砾石平原区为潜水含水层底板、细土平原区为中层承压含水层底板、盐壳湖沼区为地表以下250m深度);时间离散步长取自然月。剖分结果南北方向112格,东西向72格,平面上共有5197个有效矩形网格。
河流数学模型剖分。首先对研究区内河流水系(包括格尔木河干流与泉集河)进行分段,仅在各河段的交点上有支流汇入或引出。以含水层剖分网格为基础,把河流曲线用公里网的折线近似,由此水系共分成21段,整个水系共分为442个“河元”折线段。
地下水数学模型,空间离散选用中心节点差分、时间离散采用向后差分,建立相应的差分方程,即地下水数值模型。河流数学模型用欧拉折线法构造其计算格式,依次由河段源头向下游递推计算各河元的流量。地下水数值模型与河流数值模型联立,构成研究区水资源数值模型。
(二)计算软件的选取
用地下水数值计算通用的Modflow计算程序对水资源数值模型进行计算,选用瑞士联邦苏黎世工业大学开发的Processing Modflow Pro(简称PM)集成软件系统,包括模型前处理、剖分、插值、模型计算、数据录入、绘制各种曲线与等值线等前处理、后处理功能。
水资源模型有关空间与地层属性数据(尤其是地层空间结构数据),利用柴达木盆地结构模型数据库进行提取,构造成PM所要求的矩阵数据格式后,再调入PM中进行整理计算。
(三)模拟软件之适应性修正
PM软件系统中所用的Modflow模拟程序,其地下水蒸发模块为线性蒸发模型,而研究区地下水蒸发与埋深之关系具有较高的非线性。由于蒸发因素在地下水循环中占有较大的比重,直接使用线性模块将会引起较大的误差。
为此,对Modflow蒸发模块程序进行适应性改写,使其能够适应非线性蒸发模拟;改写后重新编译Fortran Modflow模拟程序,再连接到PM集成软件系统中。改进后的Modflow模拟程序,对浅埋区地下水蒸发量与埋深的计算精度有较大改进,提高了水资源模拟计算的仿真度。