当前位置:首页 » 工具五金 » 数据预处理工具有哪些
扩展阅读
各种工具英文怎么说 2024-12-22 23:16:49
石油库有什么影响 2024-12-22 22:08:10

数据预处理工具有哪些

发布时间: 2022-02-05 13:11:30

⑴ 数据挖掘中的数据预处理技术有哪些,它们分别适用于哪些场合

一、数据挖掘工具分类数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。二、数据挖掘工具选择需要考虑的问题数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点:(1)可产生的模式种类的数量:分类,聚类,关联等(2)解决复杂问题的能力(3)操作性能(4)数据存取能力(5)和其他产品的接口三、数据挖掘工具介绍:1.QUESTQUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。各种开采算法具有近似线性计算复杂度,可适用于任意大小的数据库。算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。为各种发现功能设计了相应的并行算法。2.MineSetMineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:MineSet以先进的可视化显示方法闻名于世。支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。操作简单、支持国际字符、可以直接发布到Web。3.DBMinerDBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。提出了一种交互式的类SQL语言——数据开采查询语言DMQL。能与关系数据库平滑集成。实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。4.IntelligentMiner由美国IBM公司开发的数据挖掘软件IntelligentMiner是一种分别面向数据库和文本信息进行数据挖掘的软件系列,它包括IntelligentMinerforData和IntelligentMinerforText。IntelligentMinerforData可以挖掘包含在数据库、数据仓库和数据中心中的隐含信息,帮助用户利用传统数据库或普通文件中的结构化数据进行数据挖掘。它已经成功应用于市场分析、诈骗行为监测及客户联系管理等;IntelligentMinerforText允许企业从文本信息进行数据挖掘,文本数据源可以是文本文件、Web页面、电子邮件、LotusNotes数据库等等。5.SASEnterpriseMiner这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SASEnterpriseMiner是一种通用的数据挖掘工具,按照"抽样--探索--转换--建模--评估"的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的"端到端"知识发现。6.SPSSClementineSPSSClementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准--CRISP-DM。Clementine的可视化数据挖掘使得"思路"分析成为可能,即将集中精力在要解决的问题本身,而不是局限于完成一些技术性工作(比如编写代码)。提供了多种图形化技术,有助理解数据间的关键性联系,指导用户以最便捷的途径找到问题的最终解决法。7.数据库厂商集成的挖掘工具SQLServer2000包含由Microsoft研究院开发的两种数据挖掘算法:Microsoft决策树和Microsoft聚集。此外,SQLServer2000中的数据挖掘支持由第三方开发的算法。Microsoft决策树算法:该算法基于分类。算法建立一个决策树,用于按照事实数据表中的一些列来预测其他列的值。该算法可以用于判断最倾向于单击特定标题(banner)或从某电子商务网站购买特定商品的个人。Microsoft聚集算法:该算法将记录组合到可以表示类似的、可预测的特征的聚集中。通常这些特征可能是隐含或非直观的。例如,聚集算法可以用于将潜在汽车买主分组,并创建对应于每个汽车购买群体的营销活动。,SQLServer2005在数据挖掘方面提供了更为丰富的模型、工具以及扩展空间。包括:可视化的数据挖掘工具与导航、8种数据挖掘算法集成、DMX、XML/A、第三方算法嵌入支持等等。OracleDataMining(ODM)是Oracle数据库10g企业版的一个选件,它使公司能够从最大的数据库中高效地提取信息并创建集成的商务智能应用程序。数据分析人员能够发现那些隐藏在数据中的模式和内涵。应用程序开发人员能够在整个机构范围内快速自动提取和分发新的商务智能—预测、模式和发现。ODM针对以下数据挖掘问题为Oracle数据库10g提供支持:分类、预测、回归、聚类、关联、属性重要性、特性提取以及序列相似性搜索与分析(BLAST)。所有的建模、评分和元数据管理操作都是通过OracleDataMining客户端以及PL/SQL或基于Java的API来访问的,并且完全在关系数据库内部进行。IBMIntelligentMiner通过其世界领先的独有技术,例如典型数据集自动生成、关联发现、序列规律发现、概念性分类和可视化呈现,它可以自动实现数据选择、数据转换、数据发掘和结果呈现这一整套数据发掘操作。若有必要,对结果数据集还可以重复这一过程,直至得到满意结果为止。现在,IBM的IntelligentMiner已形成系列,它帮助用户从企业数据资产中识别和提炼有价值的信息。它包括分析软件工具----IntelligentMinerforData和IBMIntelligentMinerforText,帮助企业选取以前未知的、有效的、可行的业务知识----如客户购买行为,隐藏的关系和新的趋势,数据来源可以是大型数据库和企业内部或Internet上的文本数据源。然后公司可以应用这些信息进行更好、更准确的决策,获得竞争优势。

⑵ 常用的数据处理软件有哪些

处理的软件有哪些?现在常用的数据的话处理的软件有非常多,而且大家都用的比较熟悉的上搜索直接搜索一下就可以了,直接能看见那个软件的那个界面。

⑶ 有哪些数据预处理的方法

1、数据清理

数据清理(data cleaning) 的主要思想是通过填补缺失值、光滑噪声数据,平滑或删除离群点,并解决数据的不一致性来“清理“数据。如果用户认为数据时脏乱的,他们不太会相信基于这些数据的挖掘结果,即输出的结果是不可靠的。


2、数据集成


数据分析任务多半涉及数据集成。数据集成将多个数据源中的数据结合成、存放在一个一致的数据存储,如数据仓库中。这些源可能包括多个数据库、数据方或一般文件。


3、数据规约


数据归约技术可以用来得到数据集的归约表示,它小得多,但仍接近地保持原数据的完整性。 这样,在归约后的数据集上挖掘将更有效,并产生相同(或几乎相同)的分析结果。


4、数据变换


数据变换包括对数据进行规范化,离散化,稀疏化处理,达到适用于挖掘的目的。

⑷ 机器学习中的数据预处理有哪些常见/重要的工具

不太清楚你说的是搭建pipeline的工具还是说pipeline里面处理数据的工具,就顺道都说一下。


  1. pipeline工具本身一般是控制这些工具的流程,最简单的crontab就定时执行就好,但是有时候会有数据依赖的问题,比如第7步依赖第三步的两个文件以及平行的第6步的文件,这个依赖并不是线性的,而是一个图的形式。当中加上有些技术延迟比如有些数据生成失败了需要重启某些特定的步骤重新生成,这个问题就稍微复杂了。crontab一般在这时候就搞不定,需要一些专门的pipeline管理,比如 spotify/luigi · GitHub 或者 Azkaban

2. 预处理文本数据本身一般用一些Linux的工具比如cut啊awk啊等等做数据筛选和清理,自己写一写python小工具做数据的简单组合比如复杂的regex规则组合,比较大的数据归类和抽象一般用Hive之类的hadoop工具都可以,里面也可以插入linux小工具和自己写的工具。


工业界的数据项目多数时间要设计如何清理数据,这和学术界的玩具数据玩起来很不一样,欢迎来到真实的世界。-ITjob

⑸ 数据处理软件有哪些

大数据分析平台是一个集成性的平台,可以将企业用户所用的数据接入,然后在该平台上进行处理,最后对得到的数据,通过各种方式进行分析展示。
大数据平台应该是集数据整合、数据处理、数据存储、数据分析、可视化、数据采集填报等功能为一体,真正帮助企业挖掘数据背后的业务逻辑,洞悉数据的蛛丝马迹,发现数据的潜在价值。亿信华辰的一站式数据分析平台ABI,就是大数据分析平台的一个典型代表。该平台融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。采用轻量级SOA架构设计、B/S模式,各模块间无缝集成。支持广泛的数据源接入。数据整合模块支持可视化的定义ETL过程,完成对数据的清洗、装换、处理。数据集模块支持数据库、文件、接口等多方式的数据建模。数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。

⑹ 数据预处理的主要方法有哪些

1.墓于粗糙集( Rough Set)理论的约简方法
粗糙集理论是一种研究不精确、不确定性知识的数学工具。目前受到了KDD的广泛重视,利用粗糙集理论对数据进行处理是一种十分有效的精简数据维数的方法。我们所处理的数据一般存在信息的含糊性(Vagueness)问题。含糊性有三种:术语的模糊性,如高矮;数据的不确定性,如噪声引起的;知识自身的不确定性,如规则的前后件间的依赖关系并不是完全可靠的。在KDD中,对不确定数据和噪声干扰的处理是粗糙集方法的
2.基于概念树的数据浓缩方法
在数据库中,许多属性都是可以进行数据归类,各属性值和概念依据抽象程度不同可以构成一个层次结构,概念的这种层次结构通常称为概念树。概念树一般由领域专家提供,它将各个层次的概念按一般到特殊的顺序排列。
3.信息论思想和普化知识发现
特征知识和分类知识是普化知识的两种主要形式,其算法基本上可以分为两类:数据立方方法和面向属性归纳方法。
普通的基于面向属性归纳方法在归纳属性的选择上有一定的盲目性,在归纳过程中,当供选择的可归纳属性有多个时,通常是随机选取一个进行归纳。事实上,不同的属性归纳次序获得的结果知识可能是不同的,根据信息论最大墒的概念,应该选用一个信息丢失最小的归纳次序。
4.基于统计分析的属性选取方法
我们可以采用统计分析中的一些算法来进行特征属性的选取,比如主成分分析、逐步回归分析、公共因素模型分析等。这些方法的共同特征是,用少量的特征元组去描述高维的原始知识基。
5.遗传算法〔GA, Genetic Algo}thrn})
遗传算法是一种基于生物进化论和分子遗传学的全局随机搜索算法。遗传算法的基本思想是:将问题的可能解按某种形式进行编码,形成染色体。随机选取N个染色体构成初始种群。再根据预定的评价函数对每个染色体计算适应值。选择适应值高的染色体进行复制,通过遗传运算(选择、交叉、变异)来产生一群新的更适应环境的染色体,形成新的种群。这样一代一代不断繁殖进化,最后收敛到一个最适合环境的个体上,从而求得问题的最优解。遗传算法应用的关键是适应度函数的建立和染色体的描述。在实际应用中,通常将它和神经网络方法综合使用。通过遗传算法来搜寻出更重要的变量组合。

⑺ 大数据处理工具有哪些

下面给你介绍几种大数据处理工具:
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster等等。
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

⑻ 大数据处理分析的工具有哪些

大数据是宝藏,人工智能是工匠。大数据给了我们前所未有的收集海量信息的可能,因为数据交互广阔,存储空间近乎无限,所以我们再也不用因“没地方放”而不得弃掉那些“看似无用”的数据。
在浩瀚的数据中,如果放置这些数据,不去分析整理,那就相当于一堆废的数据,对我们的发展没有任何意义。今天给大家分享的就是:大数据分析工具的介绍和使用。
工具一:Pentaho BI
Pentaho BI和传统的一些BI产品不一样,这个框架以流程作为中心,再面向Solution(解决方案)。Pentaho BI的主要目的是集成一系列API、开源软件以及企业级别的BI产品,便于商务智能的应用开发。自从Pentaho BI出现后,它使得Quartz、Jfree等面向商务智能的这些独立产品,有效的集成一起,再构成完整且复杂的一项项商务智能的解决方案。

工具二:RapidMiner
在世界范围内,RapidMiner是比较好用的一个数据挖掘的解决方案。很大程度上,RapidMiner有比较先进的技术。RapidMiner数据挖掘的任务涉及了很多的范围,主要包括可以简化数据挖掘的过程中一些设计以及评价,还有各类数据艺术。
工具三:Storm
Storm这个实时的计算机系统,它有分布式以及容错的特点,还是开源软件。Storm可以对非常庞大的一些数据流进行处理,还可以运用在Hadoop批量数据的处理。Storm支持各类编程语言,而且很简单,使用它时相当有趣。像阿里巴巴、支付宝、淘宝等都是它的应用企业。
工具四:HPCC
某个国家为了实施信息高速路施行了一个计划,那就是HPCC。这个计划总共花费百亿美元,主要目的是开发可扩展的一些计算机系统及软件,以此来开发千兆比特的网络技术,还有支持太位级网络的传输性能,进而拓展研究同教育机构与网络连接的能力。
工具五:Hadoop
Hadoop这个软件框架主要是可伸缩、高效且可靠的进行分布式的处理大量数据。Hadoop相当可靠,它假设了计算元素以及存储可能失败,基于此,它为了保证可以重新分布处理失败的节点,维护很多工作数据的副本。Hadoop可伸缩,是因为它可以对PB级数据进行处理。
当数据变得多多益善,当移动设备、穿戴设备以及其他一切设备都变成了数据收集的“接口”,我们便可以尽可能的让数据的海洋变得浩瀚无垠,因为那里面“全都是宝”。

⑼ 一般数据分析师常用的工具有哪些

①数据处理工具:Excel


在Excel,需要重点了解数据处理的重要技巧及函数的应用,特别是数据清理技术的应用。这项运用能对数据去伪存真,掌握数据主动权,全面掌控数据;Excel数据透视表的应用重在挖掘隐藏的数据价值,轻松整合海量数据:各种图表类型的制作技巧及Power Query、Power Pivot的应用可展现数据可视化效果,让数据说话。


②数据库:MySQL


Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。


③数据可视化:Tableau & Echarts


目前比较流行的商业数据可视化工具是Tableau & Echarts。Echarts是开源的,代码可以自己改,种类也非常丰富。


④大数据分析:SPSS & Python& HiveSQL 等


如果说Excel是“轻数据处理工具”,Mysql是“中型数据处理工具”那么,大数据分析,涉及的面就非常广泛,技术点涉及的也比较多。