当前位置:首页 » 工具五金 » 认知工具哪个好用
扩展阅读
未付款成本费用怎么计入 2024-11-25 21:16:31
学习纹绣费用要多少 2024-11-25 21:09:10

认知工具哪个好用

发布时间: 2024-08-09 11:52:49

⑴ 认知神经科学常用的研究工具和技术

文章来源于微信公众号(茗创科技),欢迎有兴趣的朋友搜索关注。

人类大脑是宇宙中结构和功能最为复杂的系统之一,其大约由 140 亿个脑细胞组成,并且每个脑细胞可生长出大约 2 万个树枝状的树突,这些树突构成复杂的结构和功能网络用来计算信息。大脑作为高级神经中枢,其运动控制、感觉产生、语言、学习以及各种高认知功能的实现都由它来控制。

大脑是如何调用其各层次结构上的组件,包括分子、细胞、脑区和全脑去实现各种认知活动的呢?

认知神经科学这门学科或许可以很好地解释这一点。认知神经科学诞生于 20 世纪 80 年代后期,最早由乔治·米勒 (George Miller) 提出,是在认知科学和神经科学的基础上发展起来的一门新生学科。传统的认知科学是研究人、动物和机器智能的本质和规律的科学。目前 认知神经科学主要通过将新兴脑科学、脑成像技术得到的数据与认知心理学范式获得的数据进行整合分析,来帮助研究者进一步理解人类的行为和各种高级认知活动。

认知神经科学的研究工具和技术有很多种,包括事件相关电位(ERP)、脑电图(EEG)、脑磁图(MEG)、正电子发射计算机断层显像(PET)、核磁共振成像(fMRI)、近红外光谱(fNIRS)、经颅直流电刺激(tDCS)、经颅磁刺激(TMS)等等。 现就这些技术的 原理和应用 来了解认知神经科学为何能够帮助我们打开大脑“黑匣子”。

ERP (Event-Related Potential)

原理: ERP是一种特殊的脑诱发电位(Evoked Potentials,EPs),指给予神经系统(从感受器到大脑皮层)特定的刺激,或使大脑对刺激(正性或负性)的信息进行加工,在该系统和脑的相应部位产生的可以检出的、与刺激有相对固定时间间隔(锁时)和特定相位的生物电反应。这种通过有意地赋予刺激以特殊的心理意义,利用多个或多样的刺激所引起的脑的电位,反映了认知过程中大脑的神经电生理的变化。

应用: 已广泛应用到心理学、生理学、医学、神经科学、人工智能等多个领域,并且发现了许多与认知活动过程密切相关的成分。对脑电成分感兴趣的小伙伴可以看往期推文 脑电必读干货:ERP经典成分汇总

EEG (Electroencephalography)

原理: EEG是一种对大脑功能变化进行检查的有效方法,人脑功能的变化是动态多变的,对一些临床上有大脑功能障碍表现的患者在做一次EEG检查没有发异常时,不能完全排除大脑疾病的存在,而应定期进行EEG复查,才能准确地发现疾病。它通过精密的电子仪器,从头皮上将脑部的自发性生物电位加以放大记录而获得图形,是通过电极记录下来的脑细胞群的自发性、节律性电活动。

应用: 在癫痫发作时,EEG可以准确地记录出散在性慢波、棘波或不规则棘波,因此对于诊断癫痫是十分准确的。需要说明的是,EEG检查选项常见的有清醒EEG、睡眠EEG、视频EEG(VEEG)和 24小时 EEG。清醒EEG即描记EEG时患者处于清醒状态。现在国内一般要求描记半小时左右。描记过程中,患者要做睁眼、闭眼、过度换气(大喘气)等动作配合。有时还要加上闪光刺激、蝶骨电极(小儿少用)等措施来提高捕捉异常脑电波的能力。

MEG (Magnetoencephalography)

原理: MEG是指将被测者的头部置于特别敏感的超冷电磁测定器中,通过接收装置可测出颅脑的极微弱的脑磁波,再用记录装置把这种脑磁波记录下来,形成图形。它集低温超导、生物工程、电子工程、医学工程等21世纪尖端科学技术于一体,是无创伤性地探测大脑电磁生理信号的一种脑功能检测技术。MEG对脑部损伤的定位诊断比EEG更为准确,同时MEG不受颅骨的影响,图像更为清晰易辨,对脑部疾病的诊断更准确。

应用: 已被用于如思维、情感等高级脑功能的研究,并被广泛用于神经外科手术前脑功能定位、癫痫灶手术定位、帕金森病、精神病和戒毒等功能性疾病的外科治疗,也在脑血管病以及小儿胎儿神经疾病等临床科学中得以应用。除临床医学以外,MEG还被广泛用于脑神经科学、精神医学和心理学等各个领域的基础研究,如皮层下神经元活动、同步神经元分析、语言学习研究、学习记忆研究以及传统的医学研究等,目前也有人将其用于特殊人群(如宇航员、飞行员等)的体检中。

PET (Positron Emission Computed Tomography)

原理: 是直接对脑功能造影的技术,给被试注射含放射性同位素的示踪物,同位素放出的正电子与脑内的负电子发生湮灭,从而释放出射线。通过记录y射线在大脑中的位置分布,可以测量局部脑代谢率(rCMR)和rCBF的改变,以此反映大脑的功能活动变化。包括直接成像、间接成像和替代成像。具体表述为:PET示踪剂(分子探针)→引入活体组织细胞内→PET分子探针与特定靶分子作用→发生湮没辐射,产生能量同为0.511MeV但方向相反且互成180°的两个光子→PET测定信号→显示活体组织分子图像、功能代谢图像、基因转变图像。

应用: 可用于精神分裂症、抑郁症、毒品成瘾症等的鉴别诊断,了解患者脑代谢情况及功能状态,如精神分裂症患者额叶、颞叶、海马基底神经节功能异常等。应用PET成像,可以测定脑内多巴胺等多种受体,从分子的水平揭示疾病的本质,这是其他方法所不能比拟的。PET也可用于癫痫灶定位、阿尔茨海默病的早期诊断与鉴别、帕金森病的病情评价以及脑梗塞后组织受损和存活情况的判断。PET检查在精神病的病理诊断和治疗效果评价方面已经显示出独特的优势,并有望在不久的将来取得突破性进展。此外,PET在艾滋病性脑病的治疗和戒毒治疗等方面的新药开发中也有重要的指导作用。

fMRI (functional Magnetic Resonance Imaging)

原理: 通过刺激特定感官,引起大脑皮层相应部位的神经活动(功能区激活),并通过磁共振图像来显示的一种研究方法。它可检测被试接受刺激(视觉、听觉、触觉等)后的脑部皮层信号变化,用于皮层中枢功能区的定位及其他脑功能的深入研究。它不但包含解剖学信息,而且具有神经系统的反应机制,作为一种无创、活体的研究方法,为进一步了解人类中枢神经系统的作用机制,以及临床研究提供了一种重要的途径。

fMRI最初是采用静脉注射增强剂等方法来实现的。20世纪90年代,美国贝尔实验室的学者Ogawa等(1990)首次报告了血氧的T2*效应。在给定的任务刺激后,血流量增加,即氧合血红蛋白增加,而脑的局部耗氧量增加不明显,即脱氧血红蛋白含量相对降低,脱氧血红蛋白具有比氧合血红蛋白T2*短的特性。脱氧血红蛋白较强的顺磁性破坏了局部主磁场的均匀性,使得局部脑组织的T2*缩短。这两种效应的共同结果就是,降低局部磁共振信号强度、激活区脱氧血红蛋白相对含量的降低,作用份额的减小,使得脑局部的信号强度增加,即获得激活区的功能图像。

这种成像方法取决于局部血氧含量,所以将其称为血氧水平依赖功能成像。由于神经元本身并没有储存能量所需的葡萄糖与氧气,神经活化所消耗的能量必须得到快速补充。经由血液动力反应的过程,血液带来了比神经活化所需更多的氧气,由于带氧血红素与去氧血红素之间的磁导率不同,含氧血量跟缺氧血量的变化使磁场产生扰动,并能被磁振造影侦测出来。借由重复进行某种思考、动作或经历,可以用统计方法判断哪些脑区在这个过程中有信号的变化。因而可以找出执行这些思考、动作或经历的相关脑区。

应用: fMRI主要被用于脑功能的基础研究与临床应用,目前涉及的主要方面是神经生理学和神经心理学。最早是被应用于神经生理活动的研究,主要是视觉和功能皮层的研究。后来,随着刺激方案的精确、实验技术的进步,fMRI的研究逐渐扩展到听觉、语言、认知与情绪等功能皮层以及记忆等心理活动的研究。大量研究报告,对于脑神经病变的fMRI研究已涉及癫痫、帕金森病、阿尔茨海默病、多发性脑硬化及脑梗死等方面。由于其空间分辨率高,其对疾病的早期诊断、鉴别、治疗和愈后跟踪具有重要的意义。在精神疾病方面,其也被应用在对精神分裂症患者、抑郁症患者的研究中。

fNIRS (functional Near-Infrared Spectros)

原理: 功能性近红外光谱技术使用650~900mm的两个及两个以上波长的光,将源点和探测点在头皮的预定区域内布成网格而获得漫反射光的空间分布。由于生物组织在该近红外光波段的吸收较少,近红外光可以穿透头皮、头骨而达到脑皮层,而反映脑组织代谢和血液动力学的氧合血红蛋白和还原血红蛋白(Hb)正是近红外光波段内的主要吸收体,因此由探测点测量的近红外光可给出脑皮层的HbO2和Hb浓度变化的空间分布图,从而实现脑功能的研究。

应用: 该技术已经广泛应用于脑认知神经科学、心理学和运动医学等的脑功能研究中,特别是在婴幼儿和特殊人群的脑研究领域有着光明前景。

tDCS (transcranial Direct Current Stimulation)

原理: 经颅直流电刺激是一种非侵入性的,利用恒定、低强度直流电(1~2 mA)调节大脑皮层神经元活动的技术。tDCS通过电极经过头皮向颅内特定区域输入电流,而颅内电流则会提高或降低神经元细胞的兴奋性(取决于输入电流的极性),而此兴奋性的提高或降低则可引起大脑功能性的改变,可以用来治疗疾病或者研究大脑的功能。

应用: 主要涉及对大脑特定区域或者特定心理问题的研究,许多学者的研究方法为刺激特定区域并观察被试在进行认知任务时的各种表现,其研究范围非常广泛包括:认知/思维/情感/记忆/学习/知觉(视觉、听觉、空间)/计划/冲动/行为/言语/注意力/社会认知等,几乎涵盖了心理学研究的所有方面。

TMS (Transcranial Magnetic Stimulation)

原理: 是一种兴奋或抑制大脑神经元的无创方法,该方法使用高强度线圈,产生快速变化的磁场脉冲,可以穿过受试者的头皮和颅骨,作用于其下的大脑皮层,诱导神经细胞发生电位活动的改变。

应用: 现已广泛应用于医学治疗领域,如运动障碍性疾病,癫痫;抑郁症;神经功能康复领域,脑卒中,失语症;成瘾问题等等。TMS在治疗神经性疼痛、帕金森病、耳鸣以及其他中枢和外周神经系统的疾病方面也有一定的应用。

⑵ 什么是思维导图啊

思维导图是表达发散性思维的有效图形思维工具。

思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来,把主题关键词与图像、颜色等建立记忆链接。思维导图充分运用左右脑的机能,利用记忆、阅读、思维的规律,协助人们在科学与艺术、逻辑与想象之间平衡发展,从而开启人类大脑的无限潜能。

(2)认知工具哪个好用扩展阅读:

因为“思维导图”过于强调“图像记忆”和“自由发散联想”而非“理解性记忆”和“结构化思考”。对于抽象思维能力较差的学生,“图像记忆”的确可以帮助学生提高“把知识记住”的效率,但却无法加深学生对知识的理解,属于一种浅层的学习。

另外“自由发散联想”具有天马行空,对思维不加控制的特点,更适合用于“头脑风暴”式的创意活动,而不适合用于学科知识教学。

因为任何学科知识都是有其内在逻辑及固定结构的,由不得胡思乱想。基于学科知识的特性,学科教学必须强调“理解性记忆”和“结构化思考”,随着学段的升高,知识越来越抽象和复杂,就更加要强调“理解的深度”而非“记住的速度”。


⑶ 你还知道哪些辅助认知的教学或学习工具

辅助认知的教学工具的话推荐几何画板和数学公式编辑器,这两个在学习理科知识方面是很方便好用的。

学习工具的话主要就是电脑,手机等等,主要就是一些搜题软件,还有就是网络提供给自己的便利等等。

学习作为一种获取知识交流情感的方式,已经成为人们日常生活中不可缺少的一项重要的内容,尤其是在二十一世纪这个知识经济时代,自主学习已是人们不断满足自身需要、充实原有知识结构,获取有价值信息,并最终取得成功的法宝。

教育者按照法律法规和行业规范,根据学校条件和职称,有目的有计划有组织地对受教育者的心智发展进行教化培育,以现有的经验、学识授人,为其解释各种现象、问题或行为,以提高实践能力,其根本是以人的一种相对成熟或理性的思维来认知对待事物。